Week 10: Reading Assignment, Homework Assignment

Lecturer: Prof. Steven Errede

Email: serrede@illinois.edu

Office: 435 Loomis (4th floor, SW corner)

Office Phone: 333-0074. HEP Sec'ys: 441 Loomis (333-4452)

Office Hours: Anytime

Course Website: http://courses.physics.illinois.edu/phys598aem/

All lecture notes, homework, demos, references, etc. are available on the P598AEM website. Please spend some time checking these out!

Course Organization:

Tuesday & Thursday, 12:30-1:50 pm, in 136 Loomis. A. Lectures:

B. Weekly Reading and Homework Assignments: HW due following Thursday, in class.

C. Take-Home Midterm Exam: Oct. 10th, due Oct. 17^h (in lieu of P598AEM HW 7). D. Take-Home Final Exam: Dec. 10th, due Dec. 17th.

Assignment For Week 10: Please read/work through P598AEM Lect. Notes 18-19. Reading

Homework Assignment For Week 10: See/do HW # 10 problems on following pages.

Physics 598AEM Week 10 Homework Assignment

- 1.) The P.D.F. for exponential decays is $f(t;\tau) = \frac{1}{\tau}e^{-t/\tau}$.
 - a.) Verify that the P.D.F <u>is</u> indeed properly normalized, *i.e.* that: $\int_0^\infty f(t;\tau)dt = 1$.
 - b.) Calculate the <u>true</u> mean lifetime \hat{t} using: $\hat{t} = E[t] = \int_{0}^{\infty} t \cdot f(t;\tau) dt$.
 - c.) Calculate the true variance and the true standard deviation using:

$$\operatorname{var}(t) \equiv \sigma_t^2 \equiv E[(t-\hat{t})^2] = \int_0^\infty (t-\hat{t})^2 \cdot f(t;\tau) dt$$
 and $\sigma_t = \sqrt{\sigma_t^2}$.

- 2.) A physicist measures the individual decay times of <u>seven</u> events, listed in the table below.
 - a.) Use the M.L.M. to obtain the "best" estimate of the mean lifetime τ^* , the variance $\sigma_{\tau^*}^2$ and the 1- σ standard deviation $\,\sigma_{_{\tau^*}} = \sqrt{\sigma_{_{\tau^*}}^2}\,$.

Event #	Decay Time
1	0.511572
2	14.647381
3	4.994859
4	7.215827
5	1.150754
6	2.716817
7	7.842374

b.) Compare your M.L.M. results with the MC *true mean* lifetime for this data sample: $\hat{\tau} = 10.000$ time units, and also the *true variance*, and the *true* 1- σ standard deviation.