
Fall 2013 Analysis of Experimental Measurements                       B. Eisenstein/rev. S. Errede 

P598AEM Lecture Note 03  1 

The Expectation Value of a Random Variable: 
 
     The expectation value [ ]E x  of a random variable x is the mean value of x, i.e. x̂  (aka μ ). 
 

For discrete xi, [ ]E x  is the sum of all xi, weighted by their associated probabilities ( )iP x : 
 

Discrete xi :      ( )
1

ˆ[ ]
N

i i
i

E x x x P xμ
=

≡ ≡ ≡ ∑  

 
For continuous x, [ ]E x  is the integral over all x, weighted by the probability density function of 
x, ( )f x : 

Continuous x:    ( )ˆ[ ]  E x x x f x dxμ≡ ≡ ≡ ∫  
 

Note:  ˆ x  is not a random variable − it is a single, well-defined number that characterizes the 
true mean of the particular/specific distribution of a random variable. 
 
It is clear that for any constant, a:    
 

Discrete:      ( ) ( ) ( ) ( )
1 1 1

 1

ˆ[ ]
N N N

i i i i i
i i i

E x a x a P x x P x a P x x a
= = =

=

+ = + = + = +∑ ∑ ∑  

Continuous:  ( ) ( ) ( ) ( )
 1

ˆ[ ]   E x a x a f x dx x f x dx a f x dx x a
=

+ = + = + = +∫ ∫ ∫  

In fact, any function of x, ( )H x  has an expectation value: 

Discrete:     ( ) ( ) ( ) ( )
1

ˆ[ ]
N

i i
i

E H x H x H x P x
=

≡ ≡ ∑  

 

Continuous: ( ) ( ) ( ) ( )ˆ[ ]E H x H x H x f x dx≡ ≡ ∫  
 
The true mean/expectation value ˆ[ ]E x x μ≡ ≡   is actually the first moment of the random 
variable x’s probability distribution, relative to/taken about the origin  x = 0. 
  

The Lth  moment of the random variable  x  taken about an arbitrary point  x = c  is defined as: 
 
 

   μL ≡ E[(x − c)L ]  
 
 
In particular, the 2nd moment of  x  taken about/with respect to the true mean ˆ x  is: 
 

( )2 2
2 ˆ[( ) ] var xE x x xμ σ≡ − ≡ ≡  ≡  the variance of  x . 

 

The quantity ( ) 2
2 varx xxσ μ σ≡ ≡ =   is known as the dispersion, or standard deviation of x. 

 

n.b. Moments taken about x = 0 are known as algebraic moments. 
       Moments taken about the true mean x = μ are known as central moments. 
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     The true mean ˆ x  tells us where (in x) the distribution is “important” – i.e. ˆ x  tells us where 
the random variable  x  is most likely to be found).   
 
     The dispersion/standard deviation xσ  is a measure of the spread (or width) of the 
distribution over the space of  x. 

 
 
     The two distributions in the above figure have the same expectation value/true mean 

ˆ[ ]E x x μ= = , but obviously have very different widths – and hence have different variances. 
 
Example of the Uniform Distribution U(0,1) in the Range  x = 0  to  x = 1: 
 

The Uniform Probability Density Function (P.D.F.) ( )0,1U  is: 
 

   ( )
1 if 0 1
0 otherwise

x
f x

≤ <⎧
= ⎨

⎩
 

 

This is correctly  “normalized“, i.e.  ( )
1 1 1

0 0 0
1 1f x dx dx dx= = =∫ ∫ ∫ .    

                                      (i.e. the area under the curve of ( )f x vs. x is = 1.) 
 

The expectation value/true mean of ( )0,1U  is:   ( )
1 1

1
20 0

ˆ   x x f x dx x dx= = =∫ ∫  
 

The variance associated with ( )0,1U  is: ( ) ( ) ( ) ( ) ( )
1 1 222 1

20 0
ˆvar xx x x f x dx x f x dxσ= = − = −∫ ∫  

 

We can certainly calculate the above variance 2σ  for U(0,1) directly, however, in general it is 
frequently often easier to calculate, if the variance is first transformed in the following way: 
 

( ) ( ) ( )

( ) ( )

( ) ( ) ( )
( ) ( ) ( )

22

22

22

22

2 2 2 2

ˆvar

ˆ ˆ                    2

ˆ ˆ                    2

ˆ ˆ                    2

ˆ ˆ ˆ                    [ ] 2 [ ] [ ] 2

xx x x f x dx

x xx x f x dx

x f x dx xx f x dx x f x dx

x f x dx x xf x dx x f x dx

E x xE x x E x x

σ= = −

= − +

= − +

= − +

= − + = − +

∫
∫
∫ ∫ ∫
∫ ∫ ∫

2 2 2ˆ ˆ[ ]x E x x= −

 

 

∴  for the ( )0,1U  distribution: ( ) 2 2 2 2 2var [ ] [ ]xx E x E x x xσ= = − = −  

small variance

large variance

 

0 
x

 

1 

1 

( )f x  
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1.0 

1.0 

( )f x

ˆ 0.5x =  

σ x 
≈ 0.29

σ x 
≈ 0.29 

U(0,1) 

0.0 
x  

So for the ( )0,1U  distribution: 
 

 
 
     This means that if we perform a measurement of a quantity  x  that results in the knowledge 
that it can be anywhere (with equal likelihood/equal/flat probability) within the range (0,1),  
our best estimate of its location is that is at the true mean, ˆ 0.5x x= =  with a standard deviation 
of 1 12 0.29xσ = ≅ . 
 

More generally, for the flat/uniform distribution ( )0, 1U L L= : 
 

        mean: ˆ
2
Lx =            variance: 

2
2

12x
Lσ =           ⇒    standard deviation:  

12x
Lσ =  

 

If the allowed range of x is a x b≤ ≤ , it is also easy to show that ( ) ( ), 1U a b b a= − , and that: 
 

        mean: ˆ
2

b ax +
=      variance: ( )2

2

12x

b a
σ

−
=   ⇒    standard deviation: 

12x
b aσ −

=  

 
Example – The HEP Hodoscope: 
 
     In particle physics experiments, a planar array of scintillation counters (“hodoscope”) is often 
used to detect the passage of ionizing (charged) particles.  If a particular counter is hit (and that 
is all that on one knows), then this information can be considered a measurement of (say) the  x  
coordinate of the trajectory at the plane of the hodoscope.  The result of the measurement is that  
x̂   is the x-coordinate of the center of the particular counter that was hit by the particle.  The 
standard deviation of the measurement is 12 0.29L Lσ = ≈ , where  L  is the lateral width  
(in the  x-direction) of the counter, as shown in the figure below: 
 
 
 
 

    
 
 
 
 

L 

x 

( ) ( )
1 22 2 1 1 1 1

2 3 4 120
var

1  0.29
12

x

x

x x dxσ

σ

= = − = − =

⇒ = ≅

∫
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     This example is also relevant for determining the uncertainty in ADC count data in the regime 
of noise-free data – e.g. a 12-bit ADC measures quasi-DC voltages over a ±5.0 volt range. 
212 bits = 4096. Note that: 10 Volts/4096 bits = 2.44 mV/ADC count.  
 
     For noise-free {or nearly noise-free} ADC data, in the absence of using so-called ADC 
dithering techniques (adding and systematically {or randomly} varying a small voltage offset), 
then 1 12ADCσ = ADC counts, corresponding to ( )1 12 2.44 0.70V mV mVσ = ⋅ = . 

 

Example – The Cauchy Distribution:  ( )
( )2

1 1
1

f x
L x Lπ

= ⋅
+

 

 

 
 

A careful check shows that:  ( ) 1f x dx
+∞

−∞
=∫      ⇐    OK 

 

but:  ( ) 2 2ˆ  ln( )
2
Lx x f x dx x L
π

+∞ +∞

−∞−∞
= = +∫    ⇐   Undefined !!! 

 
     Obviously, the expectation value of x is/should be ˆ x  = 0.  Hmmm…  
There are mathematical complications with this P.D.F. !!! 
 
Using ˆ x  = 0, we can calculate the variance of the Cauchy Distribution 
(using a table of integrals): 
 

  ( ) ( )2 2 2
2 2var L dxx x f x dx x L

L x
σ

π
+∞ +∞+∞

−∞−∞ −∞

⎧ ⎫= = = −⎨ ⎬+⎩ ⎭∫ ∫     ⇐     Infinite !!! 

               ⇑                   ⇑ 
           infinite          finite 
 
More mathematical problems…! 

1/πL

0−8L +8L 
x 

( )
( )2

1 1
1

f x
L x Lπ

= ⋅
+
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In order to avoid these difficulties, in practice a truncated Cauchy distribution is used: 
 
 

 

−X  X  
 

The requirement that:   ( ) 1f x dx
+∞

−∞
=∫   requires:   c = 

)/(tan2
1
1 LXL − . 

 

   (Note that for X → ∞ , 1c Lπ→  as we expect.) 
 

 Now:  ( ) ( )2 2ˆ  ln 0
2

XX

X X

Lx x f x dx x L
π

++

− −
= = + =∫   and ( ) 2var x σ=  is finite as well. 

 
 
More About the Moments of a Probability Distribution Function / P.D.F. 
 

The 1st central moment (i.e. taken about the true mean x̂ μ= ) is not interesting, since: 
 

 1 ˆ ˆ ˆ ˆ[ ] [ ] [ ] 0E x x E x E x x xμ ≡ − = − = − =  

 
Higher moments of a probability distribution are sometimes useful.   
 
     For example – the coefficients of skewness and kurtosis, (Gr. “kurtos” = “bulging/swelling”) 
respectively are the 3rd and 4th standardized central moments of a distribution (i.e. also taken 
about the true mean x̂ μ= ): 
 

            Skewness:   

2

3 3
3

1 3 2 2 3 2 3
2

ˆ ˆ[( ) ]    [( ) ]             
ˆ{ [( ) ]}

E x x E x x
E x x

σ

μγ
μ σ

=

− −
= = =

−
 

 

 Excess Kurtosis:   

2

4 4
4

2 4 2 2 4 2 4
2

ˆ ˆ[( ) ]     [( ) ]3 3 3
ˆ{ [( ) ]}

E x x E x x
E x x

σ

μγ
μ σ

=

− −
= − = − = −

−
 

 

     The –3 in the excess kurtosis definition is added so that 2 0γ =  for a Gaussian (aka normal) 
probability distribution. Without the –3, “regular/normal” kurtosis is defined as 4 2

4 2μ μ . 
 

( )
2

2 2  if 

0 otherwise

Lc x Xf x L x
⎧

<⎪= +⎨
⎪⎩
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Skewness 1γ  tells us whether the P.D.F. ( )f x  is: 

 γ1 < 0:  skewed toward  x < ˆ x  
  γ1 = 0:  symmetric about      ˆ x  
 γ1 > 0:  skewed toward  x > ˆ x  
 
 

Obviously, the “long tail” dominates in ])ˆ[( 3xxE − . 
 
     A probability distribution (e.g. the Gaussian/normal distribution – see below…) that has  
zero kurtosis ( )2 0γ =  is called mesokurtic, or mesokurotic (Gr. “mesos” = “middle”). 
 

Positive   kurtosis (γ2 > 0) indicates a peaked/slender/narrow probability distribution near the 
mean with abnormally long tails, and is called leptokurtic, or leptokurotic  
(Gr. “leptos” = “slender/thin”). 
 

Negative kurtosis (γ2 < 0) indicates a flattened/wide/broad probability distribution near the mean 
with abnormally shortened tails, and is called platykurtic, or platykurotic  
(Gr. “platys” = “broad/flat”). 
 
 

 
     Stock market investors are very interested in these particular higher moments  
(skewness & kurtosis) of various probability distribution functions… 
 
Important Note: 
 

     Each/every measurement of a random variable  x  contains information about the PDF ( )f x  

from which it originates – and its expectation value/true mean x̂ , variance ( ) 2var xx σ= , and the 
PDF’s higher order moments… 
 
     In the limit of an infinite # of measurements N → ∞  of the random variable x, the PDF 

( )f x  and all of its associated moments are precisely known… 

 γ1 < 0 γ1 = 0 γ1 > 0 

x̂  x̂ x̂  
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     Any random variable x can be “normalized” or “standardized”  and can thus be reduced to a 
dimensionless quantity. 
 

Suppose that the random variable x has P.D.F.  ( )f x  and has a well-defined expectation value / 

true mean ˆ x  and variance 2
xσ .    

 

Consider a new random variable  defined as:       ( ) ( )ˆ

x

x x
u x

σ
−

≡  ⇐  n.b. dimensionless quantity 

 

Aside:  in general, if  c  is a constant, then:   ( ) ( )[ ] [ ]E cg x cE g x= . 
 

Thus:    ( ) ( ) ( ) ( ) ( )ˆ 1ˆ ˆ[ ] ( ) 0
x x

x xE u x u u x f x dx f x dx x x f x dx
σ σ
−

= = = = − =∫ ∫ ∫ ,  i.e.  ˆ 0u =  

and: 
 

( ) ( ) ( ) ( ) ( )2 2ˆ ˆvar 2u u u f x dx u x f x dx u= − = −∫ ∫ ( ) ( )u x f x dx∫
 

ˆ

u

u

=

+ ( ) ( )

( ) ( )
( ) 2

2 2

2 2
2 2

 var   

1 1ˆ            1

x

x
x x

x

f x dx u f x dx

x x f x dx

σ

σ
σ σ

≡ =

=

= − = =

∫ ∫

∫
 

 

Thus, the random variable  ( ) ( )ˆ xu x x x σ≡ −  has: 

 Expectation value/true mean ( ) ˆ[ ] 0E u x u= =  

 Variance ( ) 2var 1uu σ= = , hence standard deviation 1uσ =   
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The 1-D Gaussian (aka Normal) Distribution: 
 
     One of the most common P.D.F.’s that is encountered in the everyday world of doing 
experimental physics is the Gaussian (aka normal) probability distribution function (P.D.F.):  
 

2 221( )
2  

uG u e σ

π σ
−=     with:  1σ =  

 

 
 

    It is easily verified that if  u  has the above P.D.F., then the expectation value/true mean of 
the Gaussian/normal distribution is E[u] = 0 (by symmetry) and its standard deviation, σu = 1. 
 
     In terms of probability, the probability that  u  will be found in an interval  du  is: 
 

 
1 2

1 at 0
2
1    at
2

du u
P

e du u

π

σ
π

−

⎧ =⎪⎪= ⎨
⎪ = ±
⎪⎩

     The ratio  G(±σ)/G(0)  is  1 2 0.6065... 0.61e− = ≈  

 
Later we shall show why the normal distribution is so universal in experimental physics… 
 
     In many situations in experimental physics, we need to describe a normally distributed 
random variable  x  with expectation value / true mean x̂  and standard deviation xσ .   
 

We can also invert the transformation  u =
x − ˆ x 
σ x

: 

 

The P.D.F. of  x  satisfies:  ( ) ( ) 2 2( ) /2ˆ1
2

x

x

x x dxf x dx G u du e σ

σπ
− −= =   

 

  i.e. ( ) 2 2( ) /2ˆ1
2  

x

x

x xf x e σ

π σ
− −=   ⇐ 

u 

G(0) = 1/√2π 

G(±1σ) 
= 0.61G(0) 

σ σ

−1 +1 0

Shifted Gaussian distribution, centered 
at ˆx x=  with standard deviation xσ . 

G(u) 
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 The N-D Probability Distributions Functions, N-D Cumulative Distribution Functions: 
 
    In physics experiments, we often measure more than one property of a system (e.g. the three 
spatial coordinates of a particle’s position, its 3-momentum (or velocity), the energy and/or 
lifetime of an excited atomic state, etc.)  An experiment may then result in k different random 
variables, which can be conveniently plotted on  k  mutually orthogonal axes (i.e. a mathematical 
hyper-space consisting of  k orthogonal dimensions) and treated as if they were the components 
of a k-dimensional vector.   
 
     First, let us consider only two such random variables  x  and  y. 
 

The 2-D Cumulative Distribution Function:  ( ) ( ),   .and.  F X Y Prob x X y Y≡ < <  
 

The 2-D Probability Density Function:            ( ) ( ), ,f x y F x y
x y

∂ ∂
≡

∂ ∂
  

 

If the random variables  x  and  y  are independent, then ( ),f x y  is  separable  in  x & y,   

i.e.   ( ) ( ) ( ), x yf x y f x f y= ⋅   ⇐   x & y have no correlations (i.e. are uncorrelated). 
 

Then: ( ) ( ),    ,
b d

a c
P a x b c y d dx dy f x y≤ < ≤ < = ∫ ∫  with the requirement: ( ) , 1dx dy f x y

+∞ +∞

−∞ −∞
=∫ ∫  

 
where the x, y integrals run over the allowed values of x and y:  a x b−∞ ≤ ≤ ≤ ≤ +∞     
                and:        c y d−∞ ≤ ≤ ≤ ≤ +∞ . 
 
 

x

( )f x

σ σx x

( ) 1ˆ
2

f x x
π

= =

( )
( )
ˆ  

ˆ0.61
xf x x

f x x

σ= ±

= =
 

ˆ xx σ− ˆ xx σ+x̂
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     In certain experimental situations, we may not care (or even know) what  y  is,  

hence we integrate y over its entire range and get: ( ) ( , ) g x f x y dy
+∞

−∞
= ∫ . 

 

In this situation:                       ( ) ( ),    
b

a
P a x b y g x dx≤ < −∞ ≤ < +∞ = ∫ . 

 

Thus we see that ( )g x  is also a P.D.F.; ( )g x  is known as the marginal distribution of x. 
 
Change of   k  Random Variables: 
 

     Suppose we have  k  random variables ( )1 2, ,..., kx x x , with corresponding P.D.F. 

( )1 2, ,...., kf x x x . 
 

We may wish (or need) to make a change variables from ( )1 2, ,..., kx x x  to ( )1 2, ,...., ky y y ,   
where each of the 1 2( , ,..., )i i ky y x x x= . 
 

     For the case of a single random variable x,  for a change of variables ( )y H x= , from 

P598AEM Lecture Notes 2,  p. 8, the relation ( ) ( )g y dy f x dx=  leads to the relation (here): 
 

   ( ) ( )
( )

f x
g y

H x
=   where: ( )H x dy dx= = |y-slope| 

 
For k random variables, this generalizes to: 
 

   1 2
1 2

( , ,..., )( , , , ) k
k

f x x xg y y y
J

=  

 

where  J  is the Jacobian:   

1 1 1

1 2

2 2 2
1 2

1 2
1 2

1 2

... 

...

k

k
k

k

k k k

k

y y y
x x x
y y y

y y y x x xJ
x x x

y y y
x x x

∂ ∂ ∂
∂ ∂ ∂

∂ ∂ ∂
⎛ ⎞

∂ ∂ ∂≡⎜ ⎟
⎝ ⎠

∂ ∂ ∂
∂ ∂ ∂

  ⇐   

 
i.e. compute the individual entries of the k k× matrix of partial derivatives i jy x∂ ∂ ,   
then compute the determinant of this matrix, then take the absolute value of the determinant. 

n.b.  The Jacobian J  

is the determinant of 

the k k×  matrix of 

derivatives i jy x∂ ∂   

n.b. absolute value

n.b. absolute value


