Fall 2013 Analysis of Experimental Measurements B. Eisenstein/rev. S. Errede

The Expectation Value of a Random Variable:

The expectation value E[x] of a random variable x is the mean value of x, i.e. X (aka u).

For discrete xj, E[x] is the sum of all xj, weighted by their associated probabilities P(xi) :

N
Discrete xj :  |E[X]=X=u=) xP(x
i=1

For continuous x, E[X] is the integral over all x, weighted by the probability density function of

x, f(x):

Continuous x; |E[X]=X=u EIX f (x)dx

Note: X is not a random variable — it is a single, well-defined number that characterizes the
true mean of the particular/specific distribution of a random variable.

It is clear that for any constant, a:

Discrete: E[x+a]=i(xi+a)P(xi)=i +aZP =X+a
Continuous: E[x+a]:f(x+a)f(x)dx:fxf(x)dx+ajf_(x)dx:>“<+a

In fact, any function of x, H (x) has an expectation value:
N

Discrete:  E[H (x Z H
=1

Continuous: E[H (x J'H

The true mean/expectation value E[x]= X = x is actually the first moment of the random
variable x’s probability distribution, relative to/taken about the origin x = 0.

The L™ moment of the random variable x taken about an arbitrary point x =c is defined as:

_ n.b. Moments taken about x = 0 are known as algebraic moments.
H = E[(X — C) ] Moments taken about the true mean x = x are known as central moments.

In particular, the 2" moment of x taken about/with respect to the true mean X is:

#, = E[(x=X)*] = var(x) = o;| = the variance of x.

The quantity o, =~/ 1, = \/Vaf(X) =.J/o} | is known as the dispersion, or standard deviation of x.
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The true mean X tells us where (in x) the distribution is “important” —i.e. X tells us where
the random variable x is most likely to be found).

The dispersion/standard deviation o, is a measure of the spread (or width) of the
distribution over the space of x.

small variance

large variance

The two distributions in the above figure have the same expectation value/true mean
E[x]= X = u, but obviously have very different widths — and hence have different variances.

Example of the Uniform Distribution U(0,1) in the Range x =0 to x=1:

The Uniform Probability Density Function (P.D.F.) U (0,1) is:  f(x)

A

1 if 0<x<«1 1
0 otherwise

.. . . 1 1 1 0 1
This is correctly “normalized”, i.e. IO f (x)dx = Ioldx = IO dx=1.

(i.e. the area under the curve of f(x)vs. xis=1)

~ 1 1
The expectation value/true mean of U (0,1) is: %= x f(x)dx= | xdx=4
The variance associated with U (0,1) is: var(x)=o? = J‘Ol(x—i)2 f(x)dx = J‘Ol(x—%)2 f(x)dx

We can certainly calculate the above variance o for U(0,1) directly, however, in general it is
frequently often easier to calculate, if the variance is first transformed in the following way:

var(x) = o} :J.(x—)“()2 f (x)dx
=I(x2—2xi+22) f(x)dx
:Ixzf (x)dx—.[2x>“<f (x)dx+.|‘§(2 f (x)dx
:szf (x)dx—2>“<jxf (x)dx+§<2.|‘ f(x)dx
= E[X°]-2%E[x] + X* = E[x’] - 2%* + X* = E[x*]- X

.. forthe U (0,1) distribution: [var(x) = &% = E[x*] - E[X]’ = X* - X*
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So for the U (0,1) distribution: f (x) U(0,1)
A !
var(x):af:J‘:xzdx—(%)zzé—%=ﬁ +0
_ Ox é GX
“R029 7. =029 :
SN T | > X

0.0 X=0.5 1.0

This means that if we perform a measurement of a quantity x that results in the knowledge
that it can be anywhere (with equal likelihood/equal/flat probability) within the range (0,1),
our best estimate of its location is that is at the true mean, x = X =0.5 with a standard deviation

of o, =1/312 20.29.

More generally, for the flat/uniform distribution U (0, L) =1/L:

. L : L - L
mean: X =3 variance: o’ =5 = standard deviation: o, =——

V12

If the allowed range of x is a< x <b, it is also easy to show that U (a,b)=1/(b—a), and that:

2
(b-2) = standard deviation: o, _b-a

V12

. b+a . )
mean: x=T variance: o, =

Example — The HEP Hodoscope:

In particle physics experiments, a planar array of scintillation counters (“hodoscope”) is often
used to detect the passage of ionizing (charged) particles. If a particular counter is hit (and that
is all that on one knows), then this information can be considered a measurement of (say) the x
coordinate of the trajectory at the plane of the hodoscope. The result of the measurement is that
X is the x-coordinate of the center of the particular counter that was hit by the particle. The

standard deviation of the measurement is o = L/\/1_2 ~0.29L , where L is the lateral width
(in the x-direction) of the counter, as shown in the figure below:
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This example is also relevant for determining the uncertainty in ADC count data in the regime
of noise-free data — e.g. a 12-bit ADC measures quasi-DC voltages over a £5.0 volt range.
2" bits = 4096. Note that: 10 Volts/4096 bits = 2.44 mV/ADC count.

For noise-free {or nearly noise-free} ADC data, in the absence of using so-called ADC
dithering techniques (adding and systematically {or randomly} varying a small voltage offset),

then &, =1/+/12 ADC counts, corresponding to o, :(1/@)-2.44mv =0.70mV .

Example — The Cauchy Distribution: | f (x)=—-

-8L 0 +8L
A careful check shows that: J‘jw f(x)dx=1 < OK

but:  X= wa x f(x)dx= Ziln(x2 + LZ)‘M < Undefined !
—0 T —00
Obviously, the expectation value of x is/should be X =0. Hmmm...
There are mathematical complications with this P.D.F. !!!

Using X = 0, we can calculate the variance of the Cauchy Distribution
(using a table of integrals):

+00

var(x)=c’=| x*f(x)dx :%{x[: - LZJ.j: Lz(ixxz} < Infinite !
i i
infinite finite

More mathematical problems...!
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In order to avoid these difficulties, in practice a truncated Cauchy distribution is used:
L2
C

f(X)=1"L2+x2
0

if |x|<X

otherwise

-X X

1

The requirement that: J‘jwf(X)dle requires: c= 2Lan (X /L)’

(Note that for X — o, ¢ —>1/Lz as we expect.)

Now: R:J‘jxf(x)dx:iln(x%ﬁ)ri =0 and var(x)=o" is finite as well.

More About the Moments of a Probability Distribution Function / P.D.F.

The 15! central moment (i.e. taken about the true mean X = «) is not interesting, since:
4, =E[x—X]=E[x]-E[X]=X-X=0
Higher moments of a probability distribution are sometimes useful.

For example — the coefficients of skewness and kurtosis, (Gr. “kurtos” = “bulging/swelling™)
respectively are the 3 and 4™ standardized central moments of a distribution (i.e. also taken
about the true mean X = u):

. M E[(x=%)°] E[(x=%)°]
Skewness: y, = = _ =
Y ERT o

e g  ERT o El-R
w" T E R o'

=0

Excess Kurtosis: 7, =

The -3 in the excess kurtosis definition is added so that y, =0 for a Gaussian (aka normal)
probability distribution. Without the —3, “regular/normal” kurtosis is defined as /14/y24/2 .
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Skewness y, tells us whether the P.D.F. f(x) is:

1 < 0: skewed toward x < X 11<0 71=0 71>0
v1=0: symmetric about X /\ /:'\ i : i
v1>0: skewed toward X > X : ! '

X X X

Obviously, the “long tail” dominates in E[(x —X)°].

A probability distribution (e.g. the Gaussian/normal distribution — see below...) that has
zero kurtosis (;/2 = O) is called mesokurtic, or mesokurotic (Gr. “mesos” = “middle”).

Positive kurtosis (y2 > 0) indicates a peaked/slender/narrow probability distribution near the
mean with abnormally long tails, and is called leptokurtic, or leptokurotic
(Gr. “leptos” = “slender/thin”).

Negative kurtosis (Y2 < 0) indicates a flattened/wide/broad probability distribution near the mean
with abnormally shortened tails, and is called platykurtic, or platykurotic
(Gr. “platys” = “broad/flat™).

{+) Leptokurtic General
Forms of
{0) Mesokurtic Kurtosis

{(Normal)

(-) Platykurtic

Stock market investors are very interested in these particular higher moments
(skewness & kurtosis) of various probability distribution functions...

Important Note:

Each/every measurement of a random variable x contains information about the PDF f (x)

from which it originates — and its expectation value/true mean X, variance var(x)= oy, and the
PDF’s higher order moments...

In the limit of an infinite # of measurements N — oo of the random variable x, the PDF
f (x) and all of its associated moments are precisely known...
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Any random variable x can be “normalized” or “standardized” and can thus be reduced to a
dimensionless quantity.

Suppose that the random variable x has P.D.F. f (x) and has a well-defined expectation value /

true mean X and variance o?.

Consider a new random variable defined as: < n.b. dimensionless quantity

Aside: in general, if ¢ is a constant, then: E[cg(x)]=cE[g(x)].

Thus: E[u(x)]:l]:_[u(x)f(x)dx:jﬂf(x)dx:ij‘(x—i)f(x)dx:O, ie. =0
O-X O-X

and:
var(u):j(u—l])2 f (x)dx:'[uz(x) f (x)dx—Z\&W+ﬁzj f (x)dx:'[uzf (x)dx

= [(x=%) f () ok =507 =1
Oy Oy
=var(x)=o?

Thus, the random variable u(x)=(x-X)/o, has:
Expectation value/true mean E[u (x)] =0=0
Variance var(u)= o, =1, hence standard deviation o, =1
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The 1-D Gaussian (aka Normal) Distribution:

One of the most common P.D.F.’s that is encountered in the everyday world of doing
experimental physics is the Gaussian (aka normal) probability distribution function (P.D.F.):

1 _u?/202 .
G(u):\/ﬂae P with:

-------- G(0) = 1\2n

————————— G(tlo)
= 0.61G(0)

-1 0 +1

It is easily verified that if u has the above P.D.F., then the expectation value/true mean of
the Gaussian/normal distribution is E[u] = 0 (by symmetry) and its standard deviation, oy, = 1.

In terms of probability, the probability that u will be found in an interval du is:

1
—du at u=0
P i” The ratio G(+0)/G(0) is e™” =0.6065... ~ 0.61
12 _
—e7du at u=zto
N2

Later we shall show why the normal distribution is so universal in experimental physics...

In many situations in experimental physics, we need to describe a normally distributed
random variable x with expectation value / true mean X and standard deviation o, .

X—X

We can also invert the transformation u =
Oy

The P.D.F. of x satisfies: f (x)dx=G(u)du =Le“x‘*)2’2"3 dx

N2 o,
. 1 ~(x-R)? 1202 Shifted Gaussian distribution, centered
e |f(x)= e = N e
N2r o, at x = X with standard deviation o, .
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The N-D Probability Distributions Functions, N-D Cumulative Distribution Functions:

In physics experiments, we often measure more than one property of a system (e.g. the three
spatial coordinates of a particle’s position, its 3-momentum (or velocity), the energy and/or
lifetime of an excited atomic state, etc.) An experiment may then result in k different random
variables, which can be conveniently plotted on k mutually orthogonal axes (i.e. a mathematical
hyper-space consisting of k orthogonal dimensions) and treated as if they were the components
of a k-dimensional vector.

First, let us consider only two such random variables x and .

The 2-D Cumulative Distribution Function: F(X,Y)=Prob(x< X .and. y<Y)

The 2-D Probability Density Function: f(xy)= %% F(xY)

If the random variables x and y are independent, then f(x,y) is separable in x &Y,
ie. f(xy)=1f(x)-f,(y) <& x&yhaveno correlations (i.e. are uncorrelated).

Then: [P(a<x<b, c§y<d):f:dxfcddyf(x, y)| with the requirement: [:dx[:dyf(x, y)=1

where the X, y integrals run over the allowed values of x and y: —o<as<x<b<+4mw
and: —0<c<y<d<+o0,
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In certain experimental situations, we may not care (or even know) what vy is,

hence we integrate y over its entire range and get: [ 9(X) = f: f(x y)dy|.

In this situation: P(a<x<h, —ooSy<+oo)=J.:g(X)dX.

Thus we see that g (x) is also a P.D.F.; g(x) is known as the marginal distribution of x.

Change of k Random Variables:

Suppose we have k random variables (x,,X,,...,X, ), with corresponding P.D.F.

f (X Xpreee X ) -

We may wish (or need) to make a change variables from (xl, Xyyeens

where each of the y, =y, (X, X,,..., X,) -

%) 10 (Y1, Yaren Vi)

For the case of a single random variable x, for a change of variables y=H (x) from
P598AEM Lecture Notes 2, p. 8, the relation g(y)dy = f (x)dx leads to the relation (here):

For k random variables, this generalizes to:

where: |H (x)| = |dy/dX| = |y-slope| «<—| n.b. absolute value

n.b. absolute value

n.b. The Jacobian J
is the determinant of

the k xk matrix of

derivatives dy, /ox,

f(X Xy X
g(ylvyzl"'ayk):%)’/
¥ MW
oX, OX, OX,
Y ¥ . N
where J is the Jacobian: J[MJE oX, 0%, X | <=
X, Xg oo Xy : : :
YN N Y
oX, OX, OX,

i.e. compute the individual entries of the k x k matrix of partial derivatives oy, /ox ,
then compute the determinant of this matrix, then take the absolute value of the determinant.
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