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     For any function ( ),g x y  of two random variables x and y whose (joint) P.D.F. is ( ),f x y   

the expectation value/true mean of ( ),g x y  is: 
 

  ( ) ( ) ( ) ( ) ( ) ( ) ( )[ , ] , ,  , ,  , ,E g x y g x y f x y dxdy dx dy g x y f x y dy dx g x y f x y= = =∫ ∫ ∫ ∫ ∫ ∫  
 

 { } ( ) ˆ[ ] ( , ) E x x x f x y dy dx xg x dx≡ = =∫ ∫ ∫���	��

  

        marginal distribution of x, ( )g x  
 

 { } ( ) ˆ[ ] ( , ) E y y y f x y dx dy yh y dy≡ = =∫ ∫ ∫���	��

 

       marginal distribution of y, ( )h y  
 
The individual variances of the two random variables x and y are: 
 

       
( )

( )

2 2

2 2

ˆ ˆ ˆvar [( ) ] [( )( )]

ˆ ˆ ˆvar [( ) ] [( )( )]

x

y

x E x x E x x x x

y E y y E y y y y

σ

σ

≡ ≡ − = − −

≡ ≡ − = − −

 

 
We also define a new quantity, known as the covariance of the two random variables x and y: 
 

 

( ) ( )( )2 ˆ ˆcov , [ ]
ˆ ˆ ˆˆ                         [ ]
ˆ ˆ ˆˆ                         [ ] [ ] [ ]
ˆˆ ˆˆ ˆˆ ˆˆ ˆˆ                         [ ] [ ] 2

                    

xyx y E x x y y

E xy xy xy xy
E xy xE y E x y xy
E xy xy xy xy E xy xy xy

σ≡ ≡ − −

= − − +
= − − +
= − − + = − +

ˆˆ     [ ]
                         [ ] [ ] [ ]

E xy xy
E xy E x E y

= −
= −

 

 
Often, we also use the coefficient of correlation (aka the correlation coefficient), ( , )x yρ : 
 

                         ( )cov ,
( , )

x y

x y
x yρ

σ σ
≡  
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( )Z α  

α
minα

     We show that magnitude of the coefficient of correlation ( )( , ) cov , x yx y x yρ σ σ≡  
cannot exceed unity (1).  For any two numbers ,α β (constants): 
 

{ }

2

2

2

2 2 2 2

var( ) ( [ ])

ˆ ˆ                      ( )

ˆ ˆ                      ( ) ( )

ˆ ˆ ˆ ˆ                      ( ) ( ) 2 ( )( )

                

x y E x y E x y

E x y x y

E x x y y

E x x y y x x y y

α β α β α β

α β α β

α β

α β αβ

⎡ ⎤+ = + − +⎣ ⎦
⎡ ⎤= + − −⎣ ⎦
⎡ ⎤= − + −⎣ ⎦
⎡ ⎤= − + − + − −⎣ ⎦

( ) ( ) ( )

( )
2 2

2 2 2 2

 cov , var  var

2 2 2 2

ˆ ˆ ˆ ˆ      [( ) ] [( ) ] 2 [( )( )]

                      2 cov ,

                      0

x y x yx y

x y

E x x E y y E x x y y

x y
σ σ

α β αβ

α σ β σ αβ

≡≡ = ≡ =

= − + − + − −

= + +

≥

��	�
 ��	�
 ���	��


 

 

Since ( ) ( ) ( )2var ,   anything anything f x y dx dy= ∫  and (by definition) the P.D.F. ( ), 0f x y ≥ . 
 
This must hold for any arbitrary choice of α  and β ,  so e.g. pick 1β =  and look at the quantity: 
 

( )2 2 2( ) 2 cov , 0x yZ x yα α σ σ α= + + ≥  
 

Now ( )2 2 2( ) 2cov ,  x yZ x yα σ α α σ= + +  is the equation 

of a parabola ( )2( )y x ax bx c= + +  whose minimum 
occurs at a value of  α  given by the solution of 
 

   ( ) ( )20 2 2cov ,x

dZ
x y

d
α

σ α
α

= = + ,   
 

which yields ( ) 2
min cov , xx yα σ= − . 

 
The minimum value of ( )( )2

min cov , xZ x yα σ= −  is: 
 

( ) ( ) ( ) ( ) ( ) ( )2 2 2 2 2
2 2 2 2

min 2 2 2 2 2

cov , cov , cov , cov , cov ,
2 2 0x y y y

x x x x x

x y x y x y x y x y
Z α σ σ σ σ

σ σ σ σ σ
⎛ ⎞

= − + = − + = − + ≥⎜ ⎟
⎝ ⎠

 

Thus: σy
2 −

cov(x,y)2

σ x
2 ≥ 0    or:   yxyx σσ≤),cov(   or:  

cov( , )
 1

x y

x y
σ σ

≤ .  

 

In terms of   ( ) ( )cov ,
,

x y

x y
x yρ

σ σ
≡ ,  this becomes:  ( ) ( )cov ,

1 , 1
x y

x y
x yρ

σ σ
− ≤ ≡ ≤ +   {Q.E.D.}. 
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Now suppose that the two random variables x and y are independent random variables.   
 

In this case, the joint P.D.F. satisfies: ( ) ( ) ( ), x yf x y f x f y= ⋅ . 
 

We show that ( )cov , 0x y =  for independent random variables.    
 

Recall that:   ( )cov , [ ] [ ] [ ]x y E xy E x E y= − .   
 

 
( ) ( ) ( )

( ) ( )

[ ]    ,    

            

x y

x y

E xy dx dy x y f x y dx dy x y f x f y

x f x dx y f y dy

= = ⋅

= ⋅

∫ ∫ ∫ ∫
∫ ∫

 

  

    
( ) ( ) ( )

( ) ( ) ( )

[ ]   ,   

             but:    1    by normalization

x y

x y y

E x dx dy x f x y dx dy x f x f y

x f x dx f y dy f y dy

= = ⋅

= ⋅ =

∫ ∫ ∫ ∫
∫ ∫ ∫

 

 

          ( )  [ ]  xE x x f x dx∴ = ∫   and similarly:  ( )[ ]  yE y y f y dy= ∫  
  

Thus:    ( ) ( )[ ]   [ ] [ ]x yE xy x f x dx y f y dy E x E y= ⋅ =∫ ∫  
 

and thus:    ( )cov , [ ] [ ] [ ] [ ] [ ] [ ] [ ] 0x y E xy E x E y E x E y E x E y= − = − =  {Q.E.D.}. 
 

Thus (here), the correlation coefficient ( ) ( )cov , [ ] [ ] [ ], 0
x y x y

x y E xy E x E yx yρ
σ σ σ σ

−
≡ = =  

  
Conclusion:  independent random variables are uncorrelated ! 
 
Although this is obvious, the reverse is not necessarily true, i.e.  it is possible for the  
correlation coefficient ( ),x yρ  to be zero even if x and y are not independent ! 
 

From the definition of covariance: ( ) ( )( )ˆ ˆcov , [ ] [ ] [ ] [ ]x y E x x y y E xy E x E y≡ − − = − ,  

we see that the ( )cov ,x y  will be positive  if the values of both x and y tend to be larger  
(or smaller) than their expectation values ˆ ˆ,  x y  – here, the random variables x and y  
tend to be correlated with each other: 
 

x 

y 

ŷ

x̂  

x, y  have net 
+ve correlation 

  

In this case:  
Here we imagine the random variables x and y to 
be distributed uniformly within the red boundary.   
 
There is more area in the 1st & 3rd “quadrants” 
( ˆx x>  and ˆy y> ) .and. ( ˆx x<  and ˆy y< ),   
and thus as a result, ( )cov , 0x y > . 
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   On the other hand, the following sketch shows a situation where there is more area in the 
2nd & 4th “quadrants” ( ˆx x>  and ˆy y< ) .and. ( ˆx x<  and ˆy y> ),  and thus in this case  

( )cov , 0x y < , i.e. the random variables x and y tend to be  anti-correlated with each other: 
 

   

 

x̂

ŷ  

x

y x, y have net anti-
correlation 

 
     For the case of where there is ~ equal area in each of the four “quadrants” ( ˆx x>  and ˆy y> ) 
.and. ( ˆx x<  and ˆy y< )  .and.  ( ˆx x>  and ˆy y< ) .and. ( ˆx x<  and ˆy y> ) , as shown in the 
following sketch, this is a situation where  ( )cov , 0x y ∼ , i.e. the random variables x and y  
tend to have no net correlations with each other: 
 

 

x̂

ŷ

x 

y 
There exist correlations & anti-correlations 

between random variables x and y. 

 
Let us investigate an algebraic example:   
 
Suppose x is a random variable that is distributed symmetrically about x = 0.   
 

Then: ( )ˆ[ ]  0E x x x f x dx= = =∫ . 
 

Suppose: 2y x= .  Then: ( )2 2 2 2[ ] [ ] [ ] [ ] var xE y E x E x E x x σ= = − = = .  
 

Since ( )f x  is an even function of x (i.e. it is distributed symmetrically about x = 0):  
 

 ( ) ( )( ) N
3 3

0

ˆ ˆcov , [ ] [ ] [ ] [ ] [ ] ( ) 0x y E x x y y E xy E x E y E x x f x dx
=

≡ − − = − = = =∫  

Thus x and y are dependent random variables, but have no net correlation. Within a given 
“quadrant”,  x and y will have a net correlation (1st & 3rd) or a net anti-correlation (2nd & 4th). 
 

In this case:   
( ) ( )( )ˆ ˆcov , [ ]

                [ ] [ ] [ ]
                ~ 0

x y E x x y y
E xy E x E y

≡ − −

= −

although x and y are 
obviously not  independent. 

In this case: 
( ) ( )( )ˆ ˆcov , [ ]

               [ ] [ ] [ ]
x y E x x y y

E xy E x E y
≡ − −

= −
 

will be negative .   
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Consequences of Correlations: 
 
     Suppose  two random variables  x  and  y  are known to have expectation values x̂  and ŷ   
and have standard deviations xσ  and yσ , respectively, where: 
 

 ( ) ( )2 2 2 2ˆ ˆ ˆ ˆ[ ] , [ ] , [( ) ] var , [( ) ] varx yE x x E y y E x x x E y y yσ σ= = − = = − = =  
 

Let:  A ax by= +  where a and b are constants.  Then: ˆ ˆ ˆ[ ]E A A ax by= = + , and the variance of A: 
 

  

( )
( )

( )
( )

( )
( )

( )
( )2 2

2 2 2 2

2 2 2 2 2 2 2 2

2 2 2 2 2 2

cov , var     var   

ˆvar [( ) ] [ ] [ ]

ˆ ˆˆ ˆ            [ 2  ] 2  

ˆ ˆˆ ˆ            [ ] 2 [ ] [ ]

x y

A

x yx y

A E A A E A E A

E a x ab xy b y a x ab xy b y

a E x x ab E xy xy b E y y
σ σ

σ

== = = =

= = − = −

= + + − + +

= − + − + −��	�
��	�
 ��	�


 

 

Thus:   ( ) ( )2 2 2 2 2var 2 cov ,A x yA a ab x y bσ σ σ= = + +  
 
We can alternatively express this result in terms of the correlation coefficient:  
 

 ( )cov ,
( , )

x y

x y
x yρ

σ σ
≡  

  ( ) ( )2 2 2 2 2var 2 ,A x x y yA a ab x y bσ σ σ σ ρ σ= = + +  
 

Since  ( )1 , 1x yρ− ≤ ≤ + , we have  (for  a > 0  and  b  > 0 ): 
 

( )
( )

( )
( )

2 2 2 2 2 2 2 2 2

,   1 ,   1

2 2x x y y A x x y y

x y x y

a ab b a ab b
ρ ρ

σ σ σ σ σ σ σ σ σ
= − = +

− + ≤ ≤ + +
�����	����
 �����	����


 

 

We can rewrite this relation as: ( )
( )

( )
( )

2 22

,   1 ,   1

x y A x y

x y x y

a b a b
ρ ρ

σ σ σ σ σ
= − = +

− ≤ ≤ +
���	��
 ���	��


 

 
This holds for all (positive)  a  and  b .   
 

To help understand the consequences,  suppose  a and b  are both = 1, and that x yσ σ σ= = . 
 

Then:  A x y= + and ( ) ( )2 22
x y A x yσ σ σ σ σ− ≤ ≤ +   ⇒  2 20 4Aσ σ≤ ≤  or: 

( )
N

( )
N

, 1 , 1

0 2A
x y x yρ ρ

σ σ
=− =+

≤ ≤  

 

But since:  ( )2 2 2 2 22 ,A x x y ya ab x y bσ σ σ σ ρ σ= + + ,  we see that if  the correlation coefficient 

( ), 0x yρ =  and  a= b=1 (in which case A x y= + ),  then 2 2 2
A x yσ σ σ= + , as we all learned a long 

time ago.   We have now learned that that is true only if the x, y measurements are uncorrelated!    
 

In fact, 2
Aσ  can lie anywhere between  ( )2

x yσ σ−  and  ( )2

x yσ σ+ . 
 



Fall 2012 Analysis of Experimental Measurements         B. Eisenstein/rev. S. Errede 

P598AEM Lecture Notes 04  6 

     It is easy to imagine cases/situations where the two measurements of the random variables 
 x and y are completely uncorrelated, so let us construct a situation where they are correlated: 
 
Suppose that: y a bx= + , where a and b are just numbers (i.e. constants). Then: 
 

  

( ) ( ) ( )
2 2

ˆ ˆcov , [ ] [ ] [ ] [ ]

ˆ ˆ                [ ]
ˆ                

x y E xy E x E y E x a bx x a bx

E ax bx ax bx

ax

= − = + − +

= + − −

= ˆb ax+ −

( ) ( )
2

2

2 2 2

ˆ

ˆ                [ ]  var

x

x

bx

b E x x b b x

σ

σ

=

−

= − = =
��	�


 

Whereas: 
 

     

( )
( )

2 2 2 2

2 2 2 2 2 2

2

ˆ ˆvar [( ) ] [ ]

ˆ ˆ             [ 2  ] 2  

             

yy E y y E y y

E a ab x b x a ab x b x

a

σ= = − = −

= + + − + +

= ˆ2  ab x+ 2 2 2[ ]b E x a+ − ˆ2  ab x−

( ) ( )
2

2 2

2 2 2 2 2 2

ˆ

ˆ             [ ]  var

x

x

b x

b E x x b b x

σ

σ

=

−

= − = =
��	�


 

 

Therefore, we see (here) that y xbσ σ=   (since by definition, both , 0x yσ σ > ). 
 

Thus, (here) the correlation coefficient ( ) ( ) 2 1 if  0cov ,
,

1 if  0| | | |
x

x y x x

bx y b bx y
bb b

σρ
σ σ σ σ

+ >⎧
= = = = ⎨− <⎩

 

 
We can now generalize the above to the case of a linear function of  N  random variables,  
 

1 2, ,..., Nx x x  with P.D.F. ( )1 2, ,..., Nf x x x  . 
 

Let:  ( )1 2 1 1 2 2
1

, ,..., ....
N

N i i N N
i

L x x x a x a x a x a x
=

= = + + +∑ . 

 

Then the expectation value/true mean of L is:  
1 1 1

ˆ ˆ[ ] [ ]
N N N

i i i i i i
i i i

E L L E a x a E x a x
= = =

⎡ ⎤= = = =⎢ ⎥⎣ ⎦
∑ ∑ ∑ . 

 
The variance of L is: 

   

( )
2

2 2

1

1 1

, 1

ˆ ˆvar [( ) ] ( )

ˆ ˆ                      ( ) ( )

ˆ ˆ                      ( ) ( )

N

L i i i
i

N N

i i i j j j
i j

N

i j i i j j
i j

L E L L E a x x

E a x x a x x

E a a x x x x

σ
=

= =

=

⎡ ⎤⎧ ⎫= = − = −⎢ ⎥⎨ ⎬
⎩ ⎭⎢ ⎥⎣ ⎦

⎡ ⎤⎧ ⎫⎧ ⎫
= − −⎢ ⎥⎨ ⎬ ⎨ ⎬

⎩ ⎭⎢ ⎥⎩ ⎭⎣ ⎦
⎡ ⎤

= − −⎢ ⎥
⎣ ⎦

∑

∑ ∑

∑
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( )

( )

2 2 2

1 1 1

2 2

1 1 1
 cov ,

2 2

1

ˆ ˆ ˆvar ( ) 2 ( )( )

ˆ ˆ ˆ                      [( ) ] 2 [( )( )]

                      

i j

i

N N N

L i i i i j i i j j
i i j i

N N N

i i i i j i i j j
i i j i

x x

N

i x
i

L E a x x a a x x x x

a E x x a a E x x x x

a

σ

σ

= = = +

= = = +
=

=

⎡ ⎤
= = − + − −⎢ ⎥

⎣ ⎦

= − + − −

=

∑ ∑ ∑

∑ ∑ ∑ ����	���


( )
1 1

2 cov ,
N N

i j i j
i j i

a a x x
= = +

+∑ ∑ ∑

 

 

For uncorrelated  variables (i.e. when ( )cov , 0i jx x = ), this reduces to: 
 

   ( ) 2 2 2 2

1
var

i i

N

L a x i xi
i

L aσ σ σΣ
=

= = =∑  

 

     A very common application of this is the case where the xi result from  N  repetitions of the 
same experiment in which a single random variable has been measured, e.g.  N  independent 
measurements of the length of a rod.  
 
     The linear function commonly defined is the “average, or mean value of x”  
(aka the sample mean) associated with the  N  independent measurements is: 
 

1

1 N

i
i

x x
N =

≡ ∑  

 
     Let us assume that the true mean x̂  is the same for all of the  N  individual experiments  
(i.e. the rod does not contract or expand during the course of the experiments.)   
 
     The true mean x̂  is the most that we can hope to learn about the true length of the rod.   
 
     The result of a single measurement,  xi  is not likely to be a reliable estimate of x̂ , because it 
will be distributed according to the P.D.F. ( )f x  about x̂  with standard deviations σ xi

.   
 
     We have previously learned that to “determine the true length” we are supposed to use the 
average of many measurements (i.e. N →∞ ).   In fact: 
 

[ ]
1 1

1 1 1[ ]
N N

i i
i i

E x E x E x
N N N= =

⎡ ⎤= = =⎢ ⎥⎣ ⎦
∑ ∑ N ˆ ˆ x x=  

 

     Thus, the average of  N  independent measurements has as its expectation value [ ]E x ,  
which is equal to the expectation value associated with a single measurement ˆ[ ]iE x x= .   
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     In order to determine “how close” the average/sample mean  x  will lie to the expectation 
value/true mean x̂ , we must look at the variance of the sample mean x : 
 

  

( )

( )
( )

2 2

1

2
2

1 1 1
 cov ,

1var var [( [ ]) ]

1 1 1ˆ ˆ ˆ                       2 [( )( )]

i j

N

x i
i

N N N

i i i i j j
i i j i

x x

x x E x E x
N

E x x E x x x x
N N N

σ
=

= = = +
=

⎛ ⎞= = = −⎜ ⎟
⎝ ⎠

⎛ ⎞ ⎡ ⎤= − + − −⎜ ⎟ ⎣ ⎦⎝ ⎠

∑

∑ ∑ ∑ ����	���


 

or:  ( ) ( )
2

2
2

1 1

2var cov ,
N N

x
x i j

i j i
x x x

N N
σσ

= = +

= = + ∑ ∑  

 

If the N experimental measurements ix  are independent of each other, then all of the individual 

covariances ( )cov ,i jx x  are zero, and we obtain the simple result that:  

  ( )
2

2var x
xx

N
σσ= =  = variance of the sample mean (N independent samples) 

 

x
x N

σσ =  = standard deviation of the sample mean 

 

Thus, we see that the standard deviation of the sample mean x x Nσ σ=  is a factor of 1 N  
times smaller than the standard deviation associated with an individual measurement xσ .   
 

Therefore, we also see that (obviously) the sample mean 
1

1 N

i
i

x x
N =

≡ ∑  is a statistically much 

better/more accurate estimator of the true mean x̂  than any individual/single measurement ix . 
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Comments: 
 

• We have not specified the explicit form of the P.D.F. ( )f x  in any of the above derivations. 
 
• We must distinguish between a “finite sample” which allows us to calculate the average or 
sample mean x  vs. an idealization of the mean (i.e. the true mean, x̂ ) where all possible 
outcomes of an experiment can be sampled.  In that case we would get the true mean x̂ ,  
but of course this would also require us to carry out an infinite number of experiments. 
 

   Thus, if N →∞ , then  0→xσ ,  i.e. sample mean x →  true mean x̂ . 
 
• We will use the lower case x  to represent an experimental determination of the sample mean. 
 
• We will NEVER use x  to denote the expectation value/true mean ˆ[ ]E x x≡ . 

x

( )f x  

σx σx

x x Nσ σ=

ˆ xx σ− ˆ xx σ+ˆ       x x

true mean ˆ [ ]x E x=    x  sample mean

x x Nσ σ=


