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     In the previous lecture, we learned about some of the properties of a particular linear function 
of random variables which did not depend on the explicit form of the P.D.F.  If we also specify 
the P.D.F. we can go further... 
 
     Suppose there are two independent  random variables  x1  and  x2  that have the same 
expectation value/true mean x̂  and standard deviation xσ  (these may, as above, e.g. be 
repetitions of a single experiment). 
 

We wish to calculate the P.D.F. of the sample mean  ( )1
1 22x x x≡ +   

We also define:                                                            ( )1
1 22w x x≡ −  

 

Then we also see that:  1x x w= +   and  2x x w= − . 
 

Since 1x  and 2x  are (by assumption) independent, their (joint) P.D.F. factorizes: 
 

     ( ) ( ) ( )1 2 1 2,f x x f x f x= ⋅  
 

We now change variables from ( )1 2,x x  to ( ),x w .  Call the new P.D.F. ( ),h x w .  What is ( ),h x w ? 
 

We know that:  ( ) ( )1 2 1 2,  ,h x w dx dw f x x dx dx= .  From p. 10 of  P598AEM Lecture Notes 3: 
 

 

1 2

1 2

( , )( , )
 

f x xh x w
x wJ
x x

=
⎛ ⎞
⎜ ⎟
⎝ ⎠

  where the Jacobian determinant (here) is: 1 2

1 2

1 1
12 2

1 1 2
2 2

x x
x x

J
w w
x x

∂ ∂
+ +∂ ∂

≡ = = −
∂ ∂

+ −
∂ ∂

 

 

Thus: ( ) ( ) ( ) ( ) ( ) ( )1 2 1 2
1 2 1 21 1

2 2

, ,
, 2 , 2

f x x f x x
h x w f x x f x f x= = = ⋅

−
 

 

Now if we want to find the P.D.F. of  x  alone, we must calculate the marginal distribution ( )H x : 
 

  ( ) ( ) ( ) ( ) ( )1 2 1 2,  2 ,  2H x h x w dw f x x dw f x f x dw= = = ⋅∫ ∫ ∫  
 

To go any further, we must specify a particular functional form for ( ) ( ) ( )1 2 1 2,f x x f x f x= ⋅ .   
 

Here, we assume that for both random variables 1x  & 2x  it is the Gaussian/normal distribution: 
 

  ( ) ( )2 22ˆ1
2  

i x
i

x

x xf x e σ

π σ
− −=   for  i = 1, 2. 
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Then:    

 

( ) ( )22

2 2

2

22

2

2 2 2 2

2 2 2

2( ) 2

[( ) ( ) ] 2
2

[2 ] 2
2

2( ) 2
2

ˆˆ

ˆ ˆ

ˆ ˆ4 2 2

ˆ

1 12
2  2  

2          
2  

2          
2  

2          
2  

xx

x

x

x x

x x

x

x

x

x w xx w x

x w x x w x

x xx x w

x x w

H x e e dw

e dw

e dw

e e dw

σσ

σ

σ

σ σ

π σ π σ

π σ

π σ

π σ

+∞ −−

−∞

+∞ − + −

−∞

+∞ −

−∞

+∞− −

−∞

− −+ −

+ − −

− + +

−

= ⋅

=

=

=

∫

∫

∫

∫

( )
( )

2 2

22

0

( ) 2 2ˆ

        use:    2

1          
2  2

x

ax ax
a

x

x x

e dx e dx

e

π

σ

π σ

+∞ +∞− −

−∞

− −

⇐ = =

=

∫ ∫

 

 

We see that if we set: 
2
x

x
σσ =    then:   ( ) 2 2( ) 2ˆ1

2  
xx x

x
H x e σ

π σ
− −=  

 
     So the sample mean x  associated with N = 2 independent, Gaussian/normally-distributed 
random variables 1x & 2x  is also normally distributed, with expectation value/true mean ˆ x .   
 

     Since x  has standard deviation  2x xxσ σ σ= <  we hope {quantitative statement later…} 
that x  will lie closer to ˆ x  than the individual measurements 1x  and/or 2x .  
 
     This result also holds for N independent, Gaussian/normally-distributed random variables 

1 2, ,..., Nx x x , with the result xx Nσ σ= and ( )H x  as given above. 
 
     This has been an example of one of the central tasks in “error analysis” –  the determination  
(actually, the estimation)  of the variance of a function of random variables.  For other than 
 linear functions, life can be quite complicated….  e.g.: 
 

     Suppose we wish to estimate the variance of the product function 1 2x x⋅ : 
 

( ) ( )
1 2

22
1 2 1 2 1 2var [ [ ] ]x xx x E x x E x xσ⋅ ≡ = ⋅ − ⋅  

 

To go further, we first need to compute the expectation value/true mean of 1 2x x⋅ .  
  

(Aside:  we will (also) use the bracket notation for expectation values:  ˆ[ ]E x x x μ≡ ≡ ≡ ) 
 

Thus:      ( )1 2 1 2 1 2 1 2 1 2[ ]  ,   E x x x x f x x dx dx x x⋅ = ⋅ = ⋅∫ . 
 

In order to carry out the integration, an explicit analytic form of the P.D.F. ( )1 2,f x x  is needed. 
 

Suppose 1x  and 2x  are independent random variables.  Then ( ) ( ) ( )1 2 1 2,f x x f x f x= ⋅ , hence: 
 

   1 2 1 2 1 2[ ] [ ] [ ]E x x E x E x x x⋅ = ⋅ =  
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thus: 

  

( ) ( ) ( )22
1 2 1 2 1 2 1 2 1 2

2 22 2
1 2 1 2 1 2 1 2

2 2 2 22 2
1 2 1 2 1 2

2 22 2
1 2 1 2

var [ [ ] ] [ ]

                  [ ] [ ] 2 [ ] [ ]

                  [ ] [ ] 2

                  [ ] [ ]

x x E x x E x x E x x x x

E x E x x x E x E x x x

E x E x x x x x

E x E x x x

⋅ = ⋅ − ⋅ = ⋅ −

= ⋅ − ⋅ +

= ⋅ − +

= ⋅ −

 

But: 
      ( )

1

22 2 2 2
1 1 1 1 1var   [ ] [ ]    [ ]  xx E x E x E x xσ≡ = − = −  

 

       ( )
2

22 2 2 2
2 2 2 2 2var [ ] [ ] [ ]xx E x E x E x xσ≡ = − = −  

Then: 

            
( )

( )( )
1 2

1 2

2 22 2 2
1 2 1 2 1 2

2 2 2 22 2
1 2 1 2

var  [ ] [ ]

                                

x x

x x

x x E x E x x x

x x x x

σ

σ σ

⋅ ≡ = ⋅ −

= + + −
 

Or:  

            
( )

1 2 1 2 2 1

2 2 2 22 2 2 2 2
1 2 1 2 1 2var  x x x x x xx x x x x xσ σ σ σ σ⋅ ≡ = + + + 2 2

1 2x x−

1 2 2 1

2 22 2 2 2
1 2                             x x x xx xσ σ σ σ= + +

  

 

From:  ( )
1 2 1 2 2 1

2 22 2 2 2 2
1 2 1 2var  x x x x x xx x x xσ σ σ σ σ⋅ ≡ = + +  ,  

 

dividing both sides of this expression by 2 2 2
1 2 1 2x x x x⋅ = ⋅  (for independent random 

variables) we get: 
 

                  1 2 1 2 1 2 1 2 1 2

2 2 2 2 2 2 2 2 2

2 2 2 2 2 2 2 2 2
1 2 1 2 1 2 1 2 1 2

x x x x x x x x x x

x x x x x x x x x x

σ σ σ σ σ σ σ σ σ
= + + = + +

⋅
 

 
The first two terms on the RHS are familiar from our childhood – the third term is not! 
 

If, for a particular experiment 1

2

2
1

x

x

σ
 and  2

2

2
2

x

x

σ
were both small enough that the third term:  

 

   1 2

2 2

2 2
1 2

  x x

x x

σ σ
 either  1

2

2
1

x

x

σ
 or  2

2

2
2

x

x

σ
 

 

then we get the familiar result: 1 2 1 2

2 2 2

2 2 2
1 2 1 2

x x x x

x x x x

σ σ σ
≅ +

⋅
 

 
Thus, we see that the familiar formula is actually an approximation that assumes: 
   •  small fractional uncertainties 
   •  independence of 1x  and 2x . 
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Let us now try to calculate the P.D.F. for 1 2x x⋅ , as we did for 1 2x x+ . 
 

Suppose that 1x  and 2x  are independent random variables and both are described by Gaussian / 
normal P.D.F.’s with the same expectation value  1 2ˆ ˆ ˆx x x= =  and the same variance 

1 2

2 2 2
x x xσ σ σ= = . 

 

So:           ( ) ( ) ( ) ( )2 22
1 2

ˆ1
2  

x

x

x xf x f x f x e σ

π σ
− −= = =  

Thus: 

     ( ) ( ) ( ) ( ) ( )2 2 2 2
1 2

2 2 2
1 22 2 [( ) ( ) ] 2

1 2 1 2 2
ˆ ˆ ˆ ˆ1 1 1,

2  2  2  
x x x

xx x

x x x x x x x xf x x f x f x e e eσ σ σ

π σπ σ π σ
− − − +− − − −= ⋅ = =  

  

Now make a change of variables: ( ) ( )1 2 1 2,  ,  h u v du dv f x x dx dx=   where:  1 2u x x≡ ⋅  and: 1v x≡ .   
 

(n.b. The choice for v is arbitrary as long as 1x  and 2x  can be functionally related to u and v.   
This particular choice for v is the simplest...) 
 

Then:  1x v= ,  2x u v=    and:   ( ) ( )
 

1 2

1 2

,
,

 

f x x
h u v

uvJ
x x

=
⎛ ⎞
⎜ ⎟
⎝ ⎠

 

 

Using:  1 2 2 1
1

1 2

1 0

u u
x x x x

J x
v v
x x

∂ ∂
∂ ∂

= = = −
∂ ∂
∂ ∂

     we get:     

2 2 2

2 2 2

1 2[( ) ( ) ]/2
2

1

[( ) ( ) ]/2

2

ˆ ˆ

ˆ ˆ

1( , )
2

1
2

x

x

x

x

x x x x

uv x x
v

h u v e
x

e
v

σ

σ

πσ

πσ

− +

− +

− −

− −

=

=
 

 

If we want the P.D.F. for the variable 1 2u x x≡ ⋅  only, then we integrate over v to get: 
 

 
2 2 2[( ) ( ) ]/2

2

ˆ ˆ1( )
2

x

x

uv x x
vdvH u e

v
σ

πσ
− ++∞

−∞

− −
= ∫  

 
This is as far as we can go…  carrying out the analytic integration of this integral is a mess...  
One can also see {here} that ( )H u  is  not  the P.D.F. of a Gaussian/normal distribution!  
 

     In the two figures below, we show the overall uncertainty Zσ  vs. ( )0 x yσ σ σ= =  associated 

with the product (quotient) relation Z X Y= ⋅  ( Z X Y= ) respectively, assuming  X  and  Y  are 
Gaussian-distributed independent random variables (i.e. are uncorrelated) with true means 
ˆ ˆ 1X Y= =  and with equal standard deviations 0x yσ σ σ= = , where 00.01 10.0σ≤ ≤  {thus, the 

fractional sigmas on  X  and  Y  also vary from 0.01 to 10.0}. It can be seen that when ˆ 1x Xσ >  

or/and ˆ 1y Yσ > , the non-linear/cross-term in the boxed formula above on  p. 3  of these lecture 
notes becomes increasingly important as the fractional sigmas become increasingly large. 
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Zσ  vs. ( )0 x yσ σ σ= =  for Z X Y= ⋅  

 
 

 
Zσ  vs. ( )0 x yσ σ σ= =  for Z X Y=  

 

Note that Zσ  for the quotient Z X Y=  really goes wild for 0 0.1σ ! 
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     With the above examples in mind, we consider the general problem of an arbitrary, not 
necessarily linear function ( )1 2, , ..., Ng x x x  of  N  random variables ( )1 2, , ..., Nx x x .  We assume 

that the 1 2, , ..., Nx x x  all exist, and that ( )1 2, , ..., Ng x x x  can be expanded in a Taylor series about 

the expectation values ( )1 2ˆ ˆ ˆ, , ..., Nx x x : 
 

( ) ( ) ( ) ( )( )1 2 1 2
1 1 1ˆ ˆ ˆ,

1ˆ ˆ ˆ ˆ ˆ ˆ, , ..., , , ...,  + ....
2!

i i i i j j

N N N

N N i i i i j j
i i ji i jall x x all x x x x

g g gg x x x g x x x x x x x x x
x x x= = == = =

∂ ∂ ∂
= + − + − −

∂ ∂ ∂∑ ∑∑  

 

Note that the local slope(s) of ( )1 2, , ..., Ng x x x  {which are simply numbers !} are evaluated at 

their expectation values/true means 
ˆ

ˆ
i i

i i all x x

g g
x x

=

∂ ∂
≡

∂ ∂
  

 

Furthermore, we assume that all terms in ( )2ˆi ix x− ,  ( )( )ˆ ˆi i j jx x x x− −  .and. higher orders can be 
neglected. n.b. This means that the results are valid only in the limit where the measurements 

1 2, , ..., Nx x x  are never “very far” from their expectation values 1 2ˆ ˆ ˆ, , ..., Nx x x .  In turn, this implies 
that the corresponding standard deviations 

ixσ must be “small enough”, as in the previous case, 

i.e. ( )2 2ˆ 1
i ix xσ .  Under these assumptions, then ( )1 2, , , Ng x x x  becomes a linearized function 

of the random variables ( )1 2, , ..., Nx x x : 

              ( ) ( )1 2 1 2
1

ˆ ˆ ˆ ˆ, , , , , , ( )
ˆ

N

N N i i
i i

gg x x x g x x x x x
x=

∂
≅ + −

∂∑  

Using this approximation we see that: 

( ) ( )1 2 1 2
1

ˆ ˆ ˆ ˆ[ ] [ , , , ] , , , [ ]
ˆ

N

N N i i
i i

gE g E g x x x g x x x E x x
x=

∂
= ≅ + −

∂∑  

   

So we see that:   ( )1 2ˆ ˆ ˆ[ ] , , , NE g g x x x≅   since: ˆ ˆ ˆ ˆ[ ] [ ] 0i i i i i iE x x E x x x x− = − = − = . 
 
Note that we have not yet made any assumptions about the independence or dependence of the 
random variables ix , nor anything about possible analytical representations of their P.D.F.‘s. 
 

The variance of ( )1 2, , , Ng x x x , using the above assumptions, is: 
 

( )( ) ( )
( ) ( )

2 2
1 2

2
1 2 1 2

var , , , var ( [ ])

ˆ ˆ ˆ                                                            [( , , , , , , ) ]

                                                            (

N g

N N

i

g x x x g E g E g

E g x x x g x x x

E x

σ ⎡ ⎤= ≡ ≡ −⎣ ⎦
≅ −

= −
2

1

1 1

ˆ )
ˆ

ˆ ˆ                                                            ( ) ( )
ˆ ˆ

N

i
i i

N N

i i j j
i ji j

gx
x

g gE x x x x
x x

=

= =

⎡ ⎤⎛ ⎞∂⎢ ⎥⎜ ⎟∂⎢ ⎥⎝ ⎠⎣ ⎦
⎡ ⎤∂ ∂

= − −⎢ ⎥
∂ ∂⎢ ⎥⎣ ⎦

∑

∑ ∑
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So:   ( )( ) ( )1 2
1 1 1 1

ˆ ˆvar , , , [( )( )] cov ,
ˆ ˆ ˆ ˆ

N N N N

N i i j j i j
i j i ji j i j

g g g gg x x x E x x x x x x
x x x x= = = =

∂ ∂ ∂ ∂
≅ − − =

∂ ∂ ∂ ∂∑∑ ∑∑  

 

where:  ( ) ˆ ˆcov , [( )( )]i j i i j jx x E x x x x≡ − − . 
 

n.b. In the above definition of ( )var g  we have “liberalized” our previous notation to include the 

case where i = j, where ( ) ( ) 2cov , var
ii i i xx x x σ≡ ≡ . 

 
     Also, one also needs to {always!} keep in mind that the “≅ ” symbol above means that the 
equalities are true only in the limit that the 2nd (.and. all higher-order) derivative terms in the 
Taylor‘s series expansion of ( )1 2, , , Ng x x x  can indeed be neglected… 
 
     In the special/limiting case where the xi are independent random variables, noting that: 

( )cov , 0i jx x =  for i j≠  and that ( ) ( ) 2cov , var
ii i i xx x x σ≡ ≡  for i j= , then for independent 

random variables: 

( ) ( ) ( )
2

2

1 1 1

ˆ ˆvar [( )( )] cov , var
ˆ ˆ ˆ ˆ ˆ

N N N

g i i i i i i i
i i i i ii i i

g g g g gg E x x x x x x x
x x x x x

σ
= = =

∂ ∂ ∂ ∂ ∂⎛ ⎞≡ ≅ − − = = ⎜ ⎟∂ ∂ ∂ ∂ ∂⎝ ⎠
∑ ∑ ∑   

 

In more familiar notation: ( )1 2

2
2 2 2

, ,.,
1

iN

N

g xg x x x
ii

g
x

σ σ σ
=

∂⎛ ⎞≡ ≅ ⎜ ⎟∂⎝ ⎠
∑  

 
For independent random variables (i.e. no correlations), a few simple examples of 

( )1 2

2
2 2 2

, ,.,
1

iN

N

g xg x x x
ii

g
x

σ σ σ
=

∂⎛ ⎞≡ ≅ ⎜ ⎟∂⎝ ⎠
∑  follow: 

 
 
• g = x1 ± x2 :  

  
1 2

1         1g g
x x
∂ ∂

= = ±
∂ ∂

     Thus:  
1 2 1 2

2 2 2
x x x xσ σ σ± = +     ⇐    n.b. no terms above 2nd order 

 
• g = x1 . x2 : 

  
∂g
∂x1

= x2
∂g
∂x2

= x1      Thus: 
1 2 1 2

2 2 2 2 2
2 1ˆ ˆx x x xx xσ σ σ⋅ = +      or:     

( )
1 2 1 2

2 2 2

2 2 2
1 21 2

ˆ ˆˆ ˆ
x x x x

x xx x

σ σ σ⋅ = +
⋅

 

 
• g = x1 / x2 : 

  1
2

1 2 2 2

1 xg g
x x x x
∂ ∂

= = −
∂ ∂

  Thus:  1 2

1 2

2 2
2 2

12 4
2 2

ˆ
ˆ ˆ

x x
x x x

x x
σ σ

σ ≅ +      or: 
( )

1 2 1 2

2 2 2

2 2 2
1 21 2

ˆ ˆ
x x x x

x xx x

σ σ σ
≅ +  
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     Now suppose that 1x  and  2x  are not independent random variables – i.e. there exist 

correlations between them. Then, with ( ) ( ) ( )1 21 2 1 2, cov , x xx x x xρ σ σ≡ : 
 
• g = x1 ± x2 :  

  
( ) ( )

( ) ( )

1 2

1 2 1 2 1 2

2 22 2
2 2 2

1 21 2
1 1 1 2 1 2

2 2 2 2
1 2 1 2

cov , 2 cov ,
ˆ ˆ ˆ ˆ ˆ ˆ

            2cov , 2 ,

x x i j x x
i ji j

x x x x x x

g g g g g gx x x x
x x x x x x

x x x x

σ σ σ

σ σ σ σ σ σ ρ

±
= =

⎛ ⎞ ⎛ ⎞∂ ∂ ∂ ∂ ∂ ∂
≅ = + +⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠
= + ± = + ±

∑∑  

• g = x1 . x2 : 

  
( ) ( )

( ) ( )

1 2

1 2 1 2 1 2

2 22 2
2 2 2

1 21 2
1 1 1 2 1 2

2 2 2 2 2 2 2 2
2 1 2 1 1 2 2 1 1 2 1 2

cov , 2 cov ,
ˆ ˆ ˆ ˆ ˆ ˆ

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ            2 cov , 2 ,

x x i j x x
i ji j

x x x x x x

g g g g g gx x x x
x x x x x x

x x x x x x x x x x x x

σ σ σ

σ σ σ σ σ σ ρ

⋅
= =

⎛ ⎞ ⎛ ⎞∂ ∂ ∂ ∂ ∂ ∂
≅ = + +⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠
= + + = + +

∑∑  

 

           So:   
( )

( ) ( )1 2 1 2 1 2 1 2

2 2 2 2 2

1 2 1 22 2 22 2
1 12 1 2 2 1 21 2

12 cov , 2 ,
ˆ ˆ ˆ ˆ ˆ ˆˆ ˆˆ ˆ

x x x x x x x xx x x x
x x x x x xx xx x

σ σ σ σ σ σ σ
ρ

⋅⎛ ⎞⎛ ⎞
≅ + + = + + ⎜ ⎟⎜ ⎟⋅ ⋅⋅ ⎝ ⎠ ⎝ ⎠

 

 
• g = x1 / x2 : 

  
( ) ( )

( )

1 2

1 2 1 2 1 2

2 22 2
2 2 2

1 21 2
1 1 1 2 1 2

2 2 2 2 2 2
1 1 11

1 22 4 2 2 4 3
2 2 2 2 2 2 2

cov , 2 cov ,
ˆ ˆ ˆ ˆ ˆ ˆ

ˆ ˆ ˆˆ1            2 cov , 2
ˆ ˆ ˆ ˆ ˆ ˆ ˆ

x x i j x x
i ji j

x x x x x x

g g g g g gx x x x
x x x x x x

x x xx x x
x x x x x x x

σ σ σ

σ σ σ σ σ σ
= =

⎛ ⎞ ⎛ ⎞∂ ∂ ∂ ∂ ∂ ∂
≅ = + +⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠

⎛ ⎞⎛ ⎞−
= + + = + −⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠

∑∑

( )1 2,x xρ
⎛ ⎞
⎜ ⎟
⎝ ⎠

 

 

 So: 
( )

( ) ( )1 2 1 2 1 2 1 2

2 2 2 2 2

1 2 1 22 2 22 2
1 12 1 2 2 1 21 2

12 cov , 2 ,
ˆ ˆ ˆ ˆ ˆ ˆˆ ˆˆ ˆ

x x x x x x x xx x x x
x x x x x xx xx x

σ σ σ σ σ σ σ
ρ≅ + − = + −

⋅ ⋅
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Fall 2012 Analysis of Experimental Measurements B. Eisenstein/rev. S. Errede 

P598AEM Lecture Notes 05  9 

We now introduce the notation of an under-bar to denote a vector or matrix quantity: 
 

 Let            

1

2

N

x
x

x

x

⎛ ⎞
⎜ ⎟
⎜ ⎟≡
⎜ ⎟
⎜ ⎟
⎝ ⎠

 be a column vector ( 1N ×  matrix) of  N  random variables ix and: 

 

 Let 

1

2

ˆ
ˆ

ˆ [ ]

ˆN

x
x

x E x

x

⎛ ⎞
⎜ ⎟
⎜ ⎟≡ ≡
⎜ ⎟
⎜ ⎟
⎝ ⎠

 be a column vector ( 1N ×  matrix) of expectation values/true means ˆix . 

 
We also define a column vector ( 1N ×  matrix) of “residuals” and its 1 N×  row vector transpose: 
 

( ) ( )

1 1

2 2
 

ˆ
ˆ

ˆ [ ]

ˆ

x

N N

x x
x x

R x x x E x

x x

−⎛ ⎞
⎜ ⎟−⎜ ⎟≡ − ≡ − ≡
⎜ ⎟
⎜ ⎟

−⎝ ⎠

   and:  ( ) ( )

1 1

2 2
 

ˆ
ˆ

ˆ [ ]

ˆ

T

T TT
x

N N

x x
x x

R x x x E x

x x

−⎛ ⎞
⎜ ⎟−⎜ ⎟≡ − ≡ − ≡
⎜ ⎟
⎜ ⎟

−⎝ ⎠

 

 
We can then additionally define an N N×  matrix by taking the outer product of the residual 
vector with its transpose (a row vector): 
 

( )( )

( )( ) ( )( ) ( )( )
( )( ) ( )( ) ( )( )

( )( ) ( )( ) ( )( )

1 1 1 1 1 1 2 2 1 1

2 2 1 1 2 2 2 2 2 2
  

1 1

1 1 2 2

ˆ ˆ ˆ ˆ ˆ ˆ
ˆ ˆ ˆ ˆ ˆ ˆ

ˆ ˆ

ˆ ˆ ˆ ˆ ˆ ˆ

N N

T N NT
x x

N N

N N N N N N N N

N N

x x x x x x x x x x x x
x x x x x x x x x x x x

R R x x x x

x x x x x x x x x x x x
× ×

×

− − − − − −⎛ ⎞
⎜ ⎟− − − − − −⎜ ⎟≡ − − = ⎜ ⎟
⎜ ⎟⎜ ⎟− − − − − −⎝ ⎠

. 

 

The expectation value of this matrix: ( )( )    
ˆ ˆ ˆ[ ] [ ]TT

x x xV E R R E x x x x≡ ≡ − −  is an N N×  matrix 
known as the “covariance matrix” (or “variance matrix”, if purely diagonal) or simply / 
generically as the “error matrix”. 
 

( )( )
( ) ( )

( ) ( )

( ) ( )

1 1 2 11

2 2 1 2 2

1 2

    

2 2 22
1 2 1

2 2 2 2
2 1 2

2 2 2 2
1 2

ˆ ˆ ˆ[ ] [ ]

...  cov , ... cov ,

cov , cov ,
      

   
cov , cov , ...   ...

N

N

N N N N

TT
x x x

x x x x xx N

x N x x x x x

N N x x x x x x

V E R R E x x x x

x x x x

x x x x

x x x x

σ σ σσ

σ σ σ σ

σ σ σ σ

≡ ≡ − −

⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟
⎜ ⎟⎜ ⎟= = ⎜ ⎟⎜ ⎟
⎜⎜ ⎟

⎜ ⎟ ⎜
⎝ ⎠ ⎝ ⎠

⎟
⎟

 

 

Note that (by definition) the N × N  matrix ˆ
xV  is real and symmetric, i.e. note that: 

 

( ) ( ) ( )( )2 2 ˆ ˆcov ,         cov ,         [ ]
j i i jj i x x i j x x i i j jx x x x E x x x xσ σ= = = = − −  


