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Analysis of Experimental Measurements

B. Eisenstein/rev. S. Errede

Let us investigate the effect of a change of variables in the N x N real & symmetric “covariance

matrix” aka the “variance matrix” aka the “error matrix” \ZX =E[RR;]1=E [(

V, =E[RRI1=E| (x~ElX)(x~E[X])" |=E[(x-%)(x-3)" |

Define:

Uy (%% .
(Xlx

U = Uy (X0, X

)

2)(x-%)' }:

2

o, cov (X, X,) cov( X, Xy )
| cov(x,,%) oy cov (X, Xy )
COV(Xy, %) COV(Xy,X,) .. o’

%) (n.b. for now, we do not require that k = N )

%)

We can generically define the collection of u, vectors as a k x1 matrix:

uk(xl’XZ""'XN

)

kx1
matrix

Let us assume that we can expand each u; (x1 X

Uy (X0 X000 Xy )

IIl

which we can also symbolically abbreviate as:

Explicitly writing this out:

ul(xl’XZ’ ’XN) ul()A(v)A(z' "’)A(N
uz(xiyxz’ ’XN) _ uz()zi’f(z’ "’)2N
U (X X0 Xy ) ) LU (R K,

Xy )

kx1

kx1
matrix

matrix
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xN) vector in a Taylor series about X and
also assume that 2" order (and all higher order) terms can (safely) be neglected. Then:

i g N AU (X, Xy s Xy ) .
u (%, %, )+Z laxz - | (XJ_XJ)
= - X=X
~y  Ou A ~y  OU
u(x) = u(R)+—(x-%) = u(2)+—R,
U, (R, %500, Xy ) U, (R, %y, Xy )
X, e OXy s | X =%,
+ : : :
AU (%, Ry s Xy ) AUy (K, Ryyeves Xy ) Xy — Xy
6)(1 x=X aXN X=X r’:;tlrix

kxN

matrix

kx1
matrix
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The expectation value of u=u(x) isalso E[u]=E[u(x)]=u(E[x])=u(X)=0, as we expect.
We can then determine the k x k covariance matrix \Lgassouated with the set of variables

u=u(x), defined analogously to those we defined for \Z5 :

o, cov(u,u,) ... cov(u,u
2
\ZQEE[BQBL]EE[(Q—E[QD(U ey }E [(g—g)(g—gﬂ: cov(l.lz,ul) % .. cov(u,,u
cov(u,,u) cov(u,,u,) .. o,
where the kx1 u-residual vector R is defined analogously to that for R, =x-X,i.e. R, =u-0.
The details:
. ou A
R, =u(x)—E[u(x)] = u(x)-u(E[x]) = u(x)-u(X) = (;t](z—xk D, R,
WO T T T T tw YR v ma
kxN
where we have also defined the k x N derivative matrix D . and its N xk transpose Du,X
oul aul o ow ol aw| | ou
K|, 0%, Xy | X |g 0% |y %, |
ou,| au, ou, T | oy ou, ou,
A ou e —= At ou e
Do E(_Aj: Xy [y 0%y | Xy g | and Dy, E(_AJ =| 0|, 0%y, X, |
OX T o 2 T o
N |g  O% |y Xy |4 Ny ly  OXyl, Xy |y
kxN kxN
n.b. The kx N derivative matrix D , and its N xk transpose Du,X are not symmetric matrices!
= For kxk matrices, in general Du,X # IZ_)U,X
Then:
R, R} = {u(x)~Elu (o1} {u(0) - EL(x)])” = {u(x)-u(®)}{u(x)-u(®)}
kxlm kxL Ik kxl 1xk
;
AP | (TA PN () s [
‘{a_x](l X)H(ax]“ 5)} (G‘J(X X)(i?l[axj
IxN —_—
kx1 1xk kxN Nxk
kx1 1xk
- [_Su/xBx([—S R, )T = D.,R,R.DJ, = a kxk matrix.

where: ng) R, and: R} _(D R) =R'D’

=u/x=x u/x=—=x —=x =u/x"

n.b. Recall from linear algebra that the transpose of the product of two matrices A and B is (AB)' =BT AT.
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The k xk covariance matrix \Zu associated with the u=u(x) variables can thus be written as:
u = E[R ]: E[Du/x x{Du/x x} ] E[[_) n RT DT ] D E[R ]D

u/x X—X =u/x

EE[(u—E[u])(u—E[u]) | =Elu-ie-0))

=u/x u/x

0 au) |_(9 ou )
T
. o Nx1 1xN Nx1 IxN —
L kxN Nxk kxN ' NxN ‘ Nk
031 cov(u,u,) ... cov(u,u,)
_ cov(Uy,u) Uzz cov (U, Uy ) = a kxk matrix
cov(u,u;) cov(u,,u,) .. o

Note that in the last step of the 1 and 3 rows above, we took advantage of the fact that the

T T
kxN derivative matrix D, = (XM and its N x k transpose D', = 5% ou
8x 85 s X ax .

are just sets of numbers (constants!), i.e. they are no longer functions of the random variables x; .

Now, since the N x N covariance matrix \ZX =E[RR 1= E[(g—)_?)(g—)_?)q is:

V, =E[R,R]]=E| (x~E[x])(x~EL)" |=E[ (x-%)(x-3)' |
ol cov (X, X,) cov(x, X)
_| cov(x,x,) oy, ( )
COV(Xy, %) COV(Xy,X,) ... afN

The k xk covariance matrix \7 can then be compactly written as:
u - E[R RT] E[Du/x x{Du/x x} ] E[D R RT DT ] D E[ xX— ;] D

u/x—=x—x =u/x
%,_/
=V

T T
=ulx — Du/xVx Du/x

X

Important note:

In various probablllty & statistics textbooks, the covariance matrix equation is instead written
as V =D"V.D', . A detailed comparison of V =D’"V.D', with the above derivation of

=u/x=—x =ulx"* =u/x=x =Zulx

\z =D, V.D" shows that the two seemingly different/contradictory relations are indeed

u =u/x=—x =ulx
equivalent, because @U = DJX and DUT,X = D’ I The origin of the two differing conventions can

be traced back to the respective definitions of the residual matrices as a column vector (N x1
matrix) R, =(x—X) vs. a row vector (1x N matrix) R} =(x—X) in the formation of the outer

product for the N x N covariance matrix \Zl =E[RR;]1=E[RR;],ie. R, =R and R} =R].
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Explicitly writing out this relation, long-hand, it is:

o, cov(u,u,) .. cov(u,u,)
V- cov(u,,u,) o, .. cov(u,,u,)
cov(u,u,) cov(u,u,) .. o,
kxk
ou| oul o ow ou ol | ow
MKy ly Xy Xy |4 , K[y Xy Xy g
o, COV(X,X,) ... COV(X,X,)
21 %) o, e COV( Xy, Xy)
=| X | O, Xy | . 2 . X |g 0%y Xy |y
cov(Xy, %) COV(Xy,X,) .. oy,
ool ol oy ol ol A
X [, 0%, |, Xy |, X |g 0%y Xy |y
kxN Nxk

For the common case of N independent variables x, X,,---, X, .and. N functions u,u,,---,u, all of
the covariances vanish, thus things simplify, and we then have, in explicit, long-hand notation:

2
, O 0
v 0 O'XZ2 0
_5: .
2
0 O oy,
NxN
So
o, cov(u,u,) .. cov(u,uy)
V- cov(u,,u,) . cov(u,,uy)
cov(uy,uy) cov(uy,u,) .. on,
NxN
;
0% |, 0%, OXy |, , 0%, O%|, OXy |,
% % ot o % % %
T I O A I S
=| ox |, % o TR | N | G A My |,
0 0 oy,
ai % Ou NxN ai ai ai
X |, 0%, Xy | X |, O, OXy
NxN NxN
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For the case of N independent random variables x, x,,---, X, .and. N functions u,,u,,---,u,
the N x N covariance matrix \zu has diagonal elements of the form:

N {auk(x,)

(\Zg)kk =cov(u,,u, ) =var(u )=ol =D | ———*

2
}O‘f for k=1,2,..,N
i=1 aX| X =K I

which agrees with the corresponding Taylor series derivation on p. 5 of P5S98AEM Lect. Notes 5.

In addition, the N x N covariance matrix \zu also has non-zero off-diagonal elements of the form:
~ N au (%) o[ ou, (%)
(V.), ‘COV(“k'“')‘Z[ Jax ox,

i=1 OX;
which need not be zero! The transformation from x — u has induced correlations between the
new random variables u; even though the original x; variables were independent!!!

J for k#7=12,...,N

X; =X

n
A simple example of V, = 6,,V,6], = 2|V, [ & |
h oX )7 oX

Let x, and x,be independent random variables. Let u, =2(% —X,) and u, =4(x +x,).

2
R o, O
Assume that we are given the x -basis covariance matrix V, :[ ' J

oy
ol oy
Co o) |k el | (-, (1 L
Then: D,, = =)= Tl LT¥E 1
X ou,| au, NN
8)(1 % axz %,

<

And: DT =(a—HJT = %l Ol - il Ol
ou, ou, ou, ou,
oX,

ou, ou, ' ou, ou,
X, |,

=
x>
N

So:

Vo5 o o[y [au) [t e 0 (11
Yu ™ Zuxx=Zuix — 8_2_5 8_X —El 1 0 052 ﬁ_l 1

2 2 2 2 1 2) 1( 2 _ 52
1 Oy, +O_x2 Oy, — Oy, |2 (O- +O_Xz 2 O-X1 O-Xz
2 2 2 2 |

le—O'xz O-x1+0x2

Thus in general u,and u,are not independent {b/c cov(ul,uz) :%(ofl —crfz ) #0}unless o, =0, .
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A Numerical Example:

Suppose the 1-sigma uncertainty on x, is o, =5 and the 1-sigma uncertainty on X, is o, =3.

The 2x 2 covariance matrix associated with the transformation u, == (%, =X, ), U, =Z(% +X,) is:
g o[ e eov(uu)) ol +al) (ol-0l) (4(25+9) 3(25-9)) (17 8
— cov(u,,u,) oy %(gf —af) %(o—f+af) 1(25-9) i(25+9)) |\ 8 17

Thus the 1-sigma uncertainty on u, = +(x, +x,) is: o, = V17 =4.1231

and the 1-sigma uncertainty on u, =4-(X = %,) is: o, = V17 =4.1231= o,

However, even though (here) o, =0, = V17 = 4.1231, the random variables u,and u,are not
independent — they are (positively) correlated with each other, because:

cov(uy,u, ) =cov(u,,u) = (ol —o7 ) =8 >0

or, equivalently:

p(u,u,)= % 8 _0.4706.

Undoing the Error Propagation:

Inverting this transformation, we have: x =-+(u,+U,) and X, == (-, +U,).

Let us (temporarily) pretend to ignore correlations, i.e. treat u,and u, as if they were independent.

We would then obtain:

o? = (6’9} o? (6’(1] 2-1.174317=17 = o, =17 =4.1231

ou ol
) ax2 ) ax2 1
o, =|—=| o, +| = =2.17+31.17=17 = o, =4J17=4.1231=0,
2 aul 1 auz 2 1

These results are clearly wrong !!! (Since we initially stated that o, =5 and o, =3!!!)

The (correct) inverse transformation, using matrices is: \1 = Qx/uVu[_)xT/u _(% ]\iu [%J

- ou )~ (ou
where:
X ox o oX,
DX/U_(@EJ ou, o, { + %J:%( 1 1]:>Dlmz(a—§j= o0, ou, :L{1 _1]¢Dx/u
oi) [ax, % | |- &) 11 ou) o ox | Pl o1
aod, o, ad, o,
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- A ox ).~ ( Ox 1 1)\17 8 1 -1
V, =D, VD, =| =N, [=| =% +
eis (0] ﬁ(l J(a Pt
_11125—9 L(50 0) (25 0) (o O
-1 1)\ 2s 0 18 0 o

Thus, we see via the use of the above matrix formalism, that we indeed (correctly) recover the
original o, =5 and o, =3, i.e. the random variables x, and x, are independent.

Then:

The above simple example(s) of a change of (orthonormal) variables can be easily
understood as a simple change of orthonormal basis vectors — from the independent random
variables x, and x, to the non-independent random variables u, and u, via the orthonormal

transformation u, =7 (x, —X, ), U, =-(x +X, ) and/or the inverse orthonormal
transformation x, =2 (U, +U,), X, ==(-U, +U,).
(n.b. both of these orthonormal transformations are from RH — RH coordinate systems...)

The x — u orthonormal transformation is a consequence of applying a ¢, = —45° (CW) rotation
in the x, —x, plane, as shown by the red ellipse in the figure below:

U :%(Xi_XZ)

n.b. we also see from the elliptical symmetry associated with the above figure that o, =0, =4.1

simply because of the specific choice of the ¢ =—-45° (CW) rotation in the 2-D x, — X, plane,
resulting in the u, —u, basis vectors each having equal projections onto the x, —x, basis vectors.
Had we instead chosen an arbitrary ¢ -rotation in the 2-D x, —X, plane, then in general o, # o, .
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For an arbitrary ¢, -rotation of X -basis vectors:

U = X COoS@, +X,Sing u COS @, + X, Sin CoS sin X
1 1P T S N X1_ @y T X, SN @y _ -(Dx 2 1 —~ U=R, X
u, =—x Sing, + X, CoS @, u, —X Sin@, + X, COS @, —-sing, cose, )\ X, ’
— —
=u =R, =X
The inverse ¢, -rotation transformation of u -basis vectors is (also) given by:
= U,C0S@, +U,Sing U, CoS¢, +U,Ssin cos sin u B
X 12T (RN X _ L& @, T4, SN g, _ _ Dy @, N N X:Bulg
X, =—U, Sin @, +U, COS @, X, —Uu, Sing, +U, CoS @, —-sing, cosg, )\ U, B
— —
=X EB;J. =u

But note that ¢, =—¢, (: +45° here), thus we can re-write the inverse ¢, -rotation transformation as:

=U,C0Sp, —U,Sing u, Cos@, —Uu, sin cos —sin u B
X =U PR o X _| " @, — Uy SN @, e (2 2 N N X:Bxlg
X, = U, Sin®, +U, COS @, X, u, sin @, + U, COS @, sinp, cose, J\ U, B

— —

=X ER;l =Uu

with:
R cosg, sing, \(cosp, -sing, ) (1 0 - cose, —sing, cosg, Sing, _R-R
= —sing, cosg, \sing, cosp, ) \0 1) ~ (sing, cose )| —sinp, cosp ) X *

Graphically, the inverse u — x orthonormal transformation for a ¢, = +45° (CCW) rotation is shown by
the red ellipse in the figure below:
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The equation for the red ellipse, expressed in terms of the independent random variable x, —X,
orthonormal basis vectors is given by:

2 2 Uf 0
iz+x—§:l = (X xz)[]/ ' }(Xl]:l

o 0 ]/052 X,

X X2

2
O
Note that the matrix []7/

% 0
0 217/0'X22
ol 0 (Yol 0O :(1 OJ:JIZ ol 0 \(of 0
0 o 0 ]7/ oy 0 1) — 0 ]/ o, \0 o

Which can be written compactly as: \ZK\Z;1 =1 :\Zgl\zﬁ where 1 is the unit matrix, and thus we
can also write the above x -basis ellipse equation compactly as:

2
X x5 Yor 0 |(x A
X1 s (x Xz)[ 0 Yot flx)Tt T XS

le Xo
The equation for the red ellipse, expressed in terms of the non-independent random variable
u, —u, orthonormal basis vectors is given by:

A o,
] is the inverse of the x -basis variance matrix V, = (0 B ] :
B O

i _p(ul’UZ)
i+£_2u1u2p(ul,u2):1 Sy u) 1 o, 0,0, (ullzl
o, o, 0,0y, 1-p* (u,u,) _p(ul,uz) 1 U,

O-Ulauz Guzz

where p(ul,uz)scov(ul’UZ)
Julo-uz
. 2 —-p(u,,u
Here, the matrix V ! E+ Yoo Pl 2)2/ 4% | is the inverse of the
- 1-p (u11u2) :0(Ul’uz)/aulo-u2 ]/Gu2
. o cov(u,,u,) o’ 0,0, p(U,u,)
u -basis covariance matrix V , = ' ) = ’ R :
© leov(u,,u) o, 0,0, P Uy, Uy) o,

P598AEM_Lect06.doc 9



Fall 2010 Analysis of Experimental Measurements B. Eisenstein/rev. S. Errede

Uuzl u1 uzp(uﬂu) 1 ]7/02 ul’u / U u2
c,0, (U, U,) ol 1-p” (u,u,) u,)/c,0, 1o}

) 1 1-p?(u,,u,) -0, PO )fo—+a,p(u,\,)/o,
1_p2 (ul’UZ) Oy P u,u Uy up l'u2 O-ul 1_102 (u11u2)

_ 1 1-p° (uy,u,) (10 _1
1-p?(u,u,) 0 1-p*(u,u,)) (0 1) —

which can be written compactly as: \Z \Z‘g =1 :\Z‘ul\z and thus we can also write the above

u -basis ellipse equation compactly as

2 2 2uu,p(u,u -
U_1+u_2_M:1 = uV

2 2
Uy Uz 6”1 O-Uz

If the P.D.F. associated with the independent random variables x, and X, is the Gaussian/normal
distribution, i.e.

O(%) =6 (1) Blx)= e e T ol e

The 3-D surface associated with the 2-D Gaussian/normal probability distribution G(x,,x, ) is
shown in the figure below (for the special/limiting case of o, =0, ):
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We see that contours of constant/equal probability density are (in general) ellipses in the 2-D
X, — X, plane, where the argument of the exponential is equal to a constant, i.e.

2 2
X
x12 +—~— | = constant
20, 20,

At the points (x,,X,) = (iaxl,o) and/or (x,x,)= (Oai%) on the ellipse curve in the 2-D x, — X,
plane, we see that constant = 1/2 (true for any value of (xl, x2) lying on this particular ellipse)

2 2
and thus we see that the equation of an ellipse for which {le—ﬁzx—zz] = 1 associated with the
o, o,

above 2-D Gaussian/normal P.D.F. G(x,, xz), corresponds to a 1-sigma (= 1 standard deviation)
contour (aka 1-sigma “equipotential”) of constant/equal probability density.

Similarly, e.g. for an arbitrary # of (integer) sigma/standard deviations, i.e. n_ =1,2,3,4,5,...

2 2 2
. . : . : . X n
this corresponds to contours associated with equation of ellipses for which { X % } =<

2 2

2
20, 20,

is satisfied, as shown in the figure below:

=6

N
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For the Gaussian/normal P.D.F. associated with the dependent random variables
u, s%(xl—xz) and u, E%(X1+X2)Z

{1 1 (ulz Cu? 2uu,p(uyuy)

G (U Uy) = o— ! TR CALE ﬂ where p(u,,u,)

3 cov(u,,u,)
2ro,0, \/1_,02 (u,uy,) 04,0y,

{This is the general form of a 2-D Gaussian distribution in two variables, including correlations}

Then we see that contours of constant/equal probability density are indeed ellipses in the 2-D
u, —u, plane, where the argument of the exponential is equal to a constant, i.e.

{i 1 [i.,.u_g_zuluzp—(ul’%)}] = constant

2[1-p* (upu,) [ 08 o

G'Jl o, 2 O-U1GU2
At the points (u,,u, ) =(+a,,,0) and/or (u,,u,)=(0,+o, ) on the ellipse curve in the 2-D u, —u,
plane, we see that constant = 1/2 (true for any value of (uj,u, ) lying on this particular ellipse)
and thus we see that the equation of an ellipse for which
2 2 2uu,p(u,u . .
1 - L u—12+u—§—M -1 associated with the above 2-D
2[1-p* (uu,) | 2

GU1 O-“z G'Jlauz
Gaussian/normal P.D.F. G (u;, uz), corresponds to a 1-sigma (= 1 standard deviation) contour
(aka 1-sigma “equipotential”) of constant/equal probability density for this distribution.

Similarly, e.g. for an arbitrary # of (integer) sigma/standard deviations, i.e. n_ =1,2,3,4,5,...
this corresponds to contours associated with equation of ellipses for which

2 2 2uu,p(u,u 2 : .
[1 ! Lu—1+u—2—wﬂ = %‘f is satisfied, as shown in the figure below:

E[l—pz(ul,uzﬂ ol o! 0,0,

Uy Uz
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Note from the above discussion(s), for k independent random variables that we can also write the
Gaussian P.D.F. in matrix notation as:

18 %2
—*zf'z Loy
G(xl,xz,...xk)=G(x1)-G(x2)....G(xk):;ke T :%e v
(27z_)k/2 Haxi (27) |\1X|

For k dependent random variables, the Gaussian P.D.F. in matrix notation is:

_lzk: 1 (Uﬂ“f 2uu;p(u; ;) )
1 e 2i.J:l |:1_p2(ui!uj):|LG-uzi o_uzj GuiO_Uj _ 1 _EQT\LJlg

k SN r—Tr Y (]
(27T)k/2HO-uiO-uj 1_p2(ui1uj) (27[) 2|\Lu| 2

G(uy,Uy,..U ) =

In the figure below, for a given n_ellipse contour, we show the effect of varying the correlation

- cov( X, X ) S
coefficient —1< p(Xl, x2) = M < +1 between its upper/lower limits in the general n_
O_Ulauz
. : 2 2 2uu,po(u,,u 2
ellipse equation: 1 21 “_12+“_§_M _ny
2 [1—,0 (ul,uz)J o, O 0,0, 2
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e.g. for the G(x,,x,) P.D.F.,, when x, and x, in general are dependent random variables:

XZ
p=-10 p=-08 A p=408 p=00 p=+10
l / A
ncro-x2
%
nao-xz
Y
«—— n,o, >l< n,o, —————>

Note that each of the n_ ellipses in the above figure touch/are tangent to the sides of an
enclosing rectangular box of dimensions 2n o, x2n_ o, . The above n_ ellipse equation(s),

used in conjunction with the 4 straight-line equations that describe each of the four sides of the
enclosing rectangular box can be solved simultaneously to determine the tangent/intersection
point(s) of a given ellipse with the enclosing rectangular box.
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