
Fall 2012                                Analysis of Experimental Measurements                              B. Eisenstein/rev. S. Errede 

P598AEM Lecture Notes 11   1 

Hypothesis Testing, Likelihood Functions and Parameter Estimation: 
 
     We consider estimation of (one or more) parameters to be the experimental determination 
(aka “measurement”) of those parameters  (which are  assumed to have fixed, but apriori 
unknown values),  and which is based on a  limited/finite number  of experimental observations.    

We have already encountered the sample mean, 
1

1 N

i
i

x x
N =

≡ ∑ , as an estimator of ˆ x .   

Now we will be more general…  But before we get into a full-scale study of estimation,  
we begin by looking at Hypothesis Testing using Likelihood Ratios. 
 
Suppose it is known that either Hypothesis  A  or  Hypothesis  B  is true.  And suppose further 
that if  A  is true, then the random variable  x  is apriori known to have a P.D.F.  ( )Af x ,  while 

if  B  is true, then the random variable  x  is apriori known to have a different P.D.F.  ( )Bf x . 
 

Suppose that we carry out  N  independent measurements of a random variable  x:   x1,x2,", xN : 
 

     If  A  is true, the probability that the results are   x1,x2,", xN  is: 

( ) ( ) ( ) ( ) ( )1 2 1 1 2 2
1

, , ,
N

A N A A A N N A i i
i

dP x x x f x dx f x dx f x dx f x dx
=

= ⋅ ⋅ ⋅ =∏" …  

     On the other hand, if  B  had instead been true, the probability of the same string of results 
would have been:  

( ) ( ) ( ) ( ) ( )1 2 1 1 2 2
1

, , ,
N

B N B B B N N B i i
i

dP x x x f x dx f x dx f x dx f x dx
=

= ⋅ ⋅ ⋅ =∏" …  

The Likelihood Ratio R  is defined as:    ( )
( )

( )

( )
1 2 1

1 2

1

, , ,
, , ,

N

A i i
A N i

N
B N

B i i
i

f x dxdP x x x
dP x x x f x dx

=

=

≡ =
∏

∏

"
"

R  

In other words, the Likelihood Ratio R is:  
 
{The probability that the particular experimental result of  N  measurements turned out the way 
that it did, assuming  A  is true} ÷ {The probability that the particular experimental result of  N  
measurements turned out the way that it did, assuming  B  is true} .   
 
In effect, the Likelihood Ratio  R  is the “betting odds” of  A  against  B,  
i.e. we assign probabilities to  A  and  B  proportional to their “Likelihoods”: 
 

 ( ) ( )1 2
1

, , ,
N

A A N A i i
i

dP x x x f x dx
=

≡ ≡∏"L    and    ( ) ( )1 2
1

, , ,
N

B B N B i i
i

dP x x x f x dx
=

≡ ≡∏"L  

Thus, the Likelihood Ratio is:   ( )
( )

( )

( )
1 2 1

1 2

1

, , ,
, , ,

N

A i i
A N iA

N
B B N

B i i
i

f x dxdP x x x
dP x x x f x dx

=

=

≡ ≡ =
∏

∏

"
"

LR
L

 

 

n.b. AL  and BL  are numbers – which will change (slightly), e.g. if the entire experiment is 
repeated – hence they are random variables – but they are not random distributions of any kind. 
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     Now in physics, it is common to have an  infinite  number (e.g. a continuum) of hypotheses! 
For example, in the weak decays of +ve muons ( ee v vμμ+ +→ + + ) whose spins sμ

G  are fully (i.e. 

100%) polarized  (i.e. aligned) along the ẑ  axis {the flight direction of the μ+  in the lab frame},  
the decay positrons are emitted with a (normalized) polar angle distribution in the μ+ center of  
mass frame: 

       

ẑ

μ+

e+

θsμ
G

 
     Here, ( ) ( )1

2cos 1 cos cosdP dθ α θ θ= +   is the (infinitesimal) probability that the decay e+   
is emitted at angle θ  whose cosine is within the (infinitesimal) range cosθ → cosθ + d cosθ  .    
 
     If the muons are 100% spin-polarized, then the asymmetry parameter α  is a number that 
depends on how Parity (space inversion symmetry, {here, θ θ→ − }) is violated (along with 
Charge Conjugation, i.e. μ μ+ −→ ) in the weak decays of the muon.  The value of α  is 
physically constrained to lie between −1 and +1. The Standard Model electroweak (V−A) 
prediction is ˆ 1.0α = + . The experimentally measured world-average value is 0.0016

0.00071.0009α +
−= + . 

 

     We define cosx θ≡ , which here in this situation is seen as a random variable ranging from 
1 cos 1x θ− ≤ = < + , since 0 θ π≤ < . The Probability Density Function (PDF) for spin-polarized 
μ+ decay is ( ) ( ) ( ) ( ) ( )cos1 1

2 2 cos, 1 1 cosdP x dP
dx df x x θ

θα α α θ= = + = + = , with normalization condition: 
 

( ) ( ) ( ) ( )
1 1 121 1 1 1 1

2 2 2 2 211 1
, 1 1 1 1 1 1f x dx x dx x xα α α α

+ + +

−− −
⎡ ⎤= + = + = + + − = √⎡ ⎤⎣ ⎦⎣ ⎦∫ ∫ . 

 

     The Cumulative Distribution Function (CDF) for fully spin-polarized μ+  decays is: 
 

( ) ( ) ( ) ( )21 1
2 21

, , 1 1
X

CDF x X f x dx X Xα α α
−

⎡ ⎤< = = + + −⎣ ⎦∫ . 
 

     Plots of the PDF and CDF for spin-polarized μ+  decay are shown in the two figures below, 
for four different physically allowed values of the asymmetry parameter, α : 
 

( ) ( )1
2

cos
1 cos

cos
dP

d
θ

α θ
θ

= +
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     An experimentalist wants to measure the α  parameter, i.e.  so as to be able to choose among 
all possible hypotheses – here, a continuum: 1.00000α = − , 0.99999α = − , ... , 0.00001α = − , 

0.00000α = , 0.00001α = , ... , 0.99999α = ..., 1.00000α = .   
 

N  muon decays are measured and yield the (independent random variable) set of angles θ i . 
 

If we define cosi ix θ≡ ,  then the P.D.F. becomes ( ) ( )1
2, 1f x xα α= +  and the Likelihood is: 

( ) ( )
1

,
N

A i
i

f xα α
=

⇒ =∏L L . 

As before, we will think in terms of the Likelihood Ratio  ( ) ( )1 2α α=R L L  and assign a 

Likelihood { = “probability that αm  is true” ) of ( )mαL } .  Next, we plot  ( )αL  vs. α : 
 

00 

( )αL

α α
*α  

αΔ  

*α

-OR-

( )αL  

 
The Most Probable Value of α , *α  is called the Maximum Likelihood Solution.   
 
The Root Mean Square (RMS) Spread – the square root of the variance  of α  around *α  is a 

measure of the accuracy with which *α  is determined, call it ( )2  αα σΔ ≡ .  

If  N  is  large,  then ( )αL  will be a Gaussian (due to/because of the Central Limit Theorem). 
 
But if  N  is small, then we may have a situation like the one depicted on the LHS of the above figure.  
In that case, αΔ  has no real meaning and should not be quoted.  Instead, the plot should be shown. 
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Now let us be very careful...  If we interpret ( )αL  as a measure of the “probability of α ” , then 
we must make certain that it is properly normalized.   

Thus, we calculate  ( )dα α∫L  and replace ( )αL  by ( )
( )d
α
α α∫

L
L

.  Then we know that: 

  

( )
( ) ( )

( )

2
2 2 2

*
[( *) ]

d
E

dα

α α α α
α σ α α

α α

−
Δ ≡ ≡ − = ∫

∫
L

L
    or:  

( ) ( )
( )

2* d

dα

α α α α
α σ

α α

−
Δ = = ∫

∫
L

L
 

 
This approach to determining parameters (such as α ) and their uncertainties ασ  is called the 
Maximum Likelihood Method  (M.L.M.) 
 
A Detailed Example of the Use of the M.L.M. : 
 

     Suppose we are trying to “directly” measure a physical parameter 0α .  Let each measurement 
be called  ix , and let iσ  be the standard deviation associated with each individual measurement 

ix .  Let us further assume that the  N  independent individual measurements ( ix ) are Gaussian-
distributed, with ˆ x ≡ α0  as their expectation value.   

Then for any individual measurement:       ( ) ( )2 2
0 2

0
1,

2  
i ix

i
i

f x e α σα
π σ

− −=  

Thus, for  N  independent measurements:        ( ) ( )2 22

1

1
2  

i i
N

x

i i

e α σα
π σ

− −

=

=∏L  

 

n.b.  Here, we have used the parameter  α  instead of 0α , since we are trying to find/determine  

0α   (which is apriori unknown).  It is by varying  α  (as a “free” parameter) that we find / 
determine / “measure” the particular value, *α  (which we identify with 0α ) that maximizes the 
likelihood function ( )αL   .    
 

Note further that we also use the “shorthand” ( )αL  instead of the more correct ( )1; , , Nx xα "L . 
 
We will carry out the maximization of the Likelihood function explicitly, i.e. we will find 

( )α α∂ ∂L  and then look for a zero corresponding to a maximum in ( )αL .   

Note also that in practice, we maximize ( )ln αL , the “log likelihood” instead of ( )αL .  Define: 
 

( ) ( ) ( )

( )

2 22

1

2

2
1 1

1ln ln
2  

1                         ln
22  

i i
N

x

i i

N N
i

i i ii

e

x

α σα α
π σ

α
σπ σ

− −

=

= =

⎧ ⎫⎪ ⎪≡ = ⎨ ⎬
⎪ ⎪⎩ ⎭

⎧ ⎫⎧ ⎫ −⎪ ⎪ ⎪ ⎪= −⎨ ⎬ ⎨ ⎬
⎪ ⎪ ⎪ ⎪⎩ ⎭ ⎩ ⎭

∑

∑ ∑

A L
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Note that if  ( )αL   has a maximum at some *α α= , then ( ) ( )lnα α≡A L   will also have a 
maximum at the same value of α .  Thus: 
 

( ) ( ) ( )2

2
1

1ln     constant
2

N
i

i i

x α
α α

σ=

−
≡ = − +∑A L  

 

Then:       ( ) ( )
2

1

  +
N

i

i i

d x
d
α αα
α σ=

−′ ≡ = ∑
A

A   

And:      ( ) ( )2

2 2
1

1N

i i

d
d

α
α

α σ=

′′ ≡ = −∑
A

A  

Finally, set:  ( ) ( ) 0
d

d
α

α
α

α ∗

′ ≡ =
A

A   and solve: 

2
1

* 0
N

i

i i

x α
σ=

−
=∑   ⇒  2 2

1 1

* 0
N N

i

i ii i

x α
σ σ= =

− =∑ ∑   ⇒  2 2 2
1 1 1

* 1*
N N N

i

i i ii i i

x α α
σ σ σ= = =

= =∑ ∑ ∑   ⇒  
2

1

2
1

*
1

N
i

i i
N

i i

x
σα

σ

=

=

=
∑

∑
 

 
Thus we see that the Maximum Likelihood value of the parameter *α  is just a Weighted Mean.  
 

Note that if all of the individual measurements ix  had the same variances 2 2
iσ σ= , the above 

expression would reduce to the simple/arithmetic/unweighted sample mean:   α∗ =
1
N

xi
i=1

N

∑  

 
     So we recover a result that we should have anticipated, and see how to use M.L.M. in the 
simplest case.  But has this elegant procedure given us anything new?  In order to understand 
this, we now “step back” and look in general at estimation.   
 

     For simplicity, let us consider “experiments” where we perform a single measurement xk ,   
in each, and where we are trying to “determine” (i.e. estimate)  a common single parameter λ . 
 
     Later, when we look at practical schemes, we will discuss the case(s) of several 
measurements per experiment, and also the simultaneous determination of several parameters.  
 

     After we have made  N  independent measurements of a random variable  x:   x1,",xN ,   
we construct a function   S(x1,", xN )   whose numerical value is the estimate of the apriori 
unknown parameter of interest λ (e.g. 2ˆ, ,...xx σ ). Thus the estimator  S  cannot depend on λ .   
The numerical value of the function S  (“the estimator”) is itself a random variable.  
 

For example, if we wanted to estimate  the expectation value of  x,  ˆ[ ]E x x=   for a set of 

Gaussian-distributed  measurements (whose P.D.F. is ( )2 2ˆ 21
2  

x xe σ

π σ
− − ,  all with the same 

standard deviation σ )  we could use e.g. the sample mean:    1
1

1( , , )
N

N i
i

S x x x x
N =

= ≡ ∑"  

Since this is  < 0, the 
extremum is a maximum 
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This estimator  is “unbiased”,  since  ˆ[ ]E S x= .  This is nice! 
 
In general, the estimator  S  that we choose may in fact be “biased”.   
 

That is, [ ]E S  may in fact not be λ≡ , the “true” value of the parameter. 
 

We define the Bias ( )B λ  as the difference between [ ]E S  and λ :   ( ) [ ]B E Sλ λ≡ −  
 

A “good estimator” S  will be unbiased, i.e. have ( ) [ ] 0B E Sλ λ≡ − = . 
 

Another important property of the estimator S is its own variance, σS
2 .  It is obviously highly 

desirable to invent estimators with σS
2  as small as possible. Can σS

2  be arbitrarily small? (ans: No!) 
 
It is not obvious (and in general not true!) that one can find an estimator  S  with both minimum 
bias  and  minimum variance.   
 
For now, we will deal only with unbiased estimators, but later on, we will look at the biased kind. 
 
For now, we focus on/concern ourselves with possible bias issues associated with variance: 
 

Let ( ) ;f x λ  be the P.D.F. associated with the measurement of x. λ  is the parameter we wish to 
determine by carrying out a series of independent experimental measurements   x1,",xN .   
 

The joint P.D.F. of this series is  ( ) ( ) ( ) ( )1 2 1 2, , , ; ; ; ;N Nf x x x f x f x f xλ λ λ λ= ⋅ ⋅ ⋅" …   provided 
that the  N  individual measurements of ix  are independent. 
 

Let    S(x1,", xN )  be an unbiased estimator of λ ,  i.e. [ ]E S λ= . 
 

Then:       ( ) ( ) ( ) ( )1 2 1 2 1 2[ ] , , , ; ; ;N N NE S S x x x f x f x f x dx dx dxλ λ λ λ= = ⋅ ⋅ ⋅∫ … … …  
 
We now go through a series of manipulations in order to arrive at a result concerning the 
minimum variance associated with the estimator S.   
 
Along the way, we will also define a quantity known as “information”.   
 
n.b.  
In all that follows, we assume all integrals are defined, integration and differentiation commute, etc...  
So:             ( ) ( ) ( ) ( )1 2 1 2 1 2[ ] , , , ; ; ;N N NE S S x x x f x f x f x dx dx dxλ λ λ λ= = ⋅ ⋅ ⋅∫ … … …  
 
Differentiate both sides of the above relation with respect to the parameter λ : 
 

( ) ( ) ( ) ( ){ }1 2 1 2 1 21 , , , ; ; ;N N N
dS x x x f x f x f x dx dx dx

d
λ λ λ

λ
= ⋅ ⋅ ⋅∫ … … …  

Then let us 
 

Define:   ( ) ( ) ( ) ( ) ( )1 2 1 2
1

, , , ; ; ; ; ;
N

N i N
i

x x x f x f x f x f xλ λ λ λ λ
=

≡ = ⋅ ⋅ ⋅∏… …L  
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Define:    ( ) ( ) ( )1 2 1 2
1

, , , ; ln , , , ; ln ;
N

N N i
i

x x x x x x f xλ λ λ
=

≡ =∑A … …L  

Define:   ( ) ( ) ( ) ( )1 2
1 2 1 2

1

, , , ;
, , , ; ln , , , ; ln ;

N
N

N N i
i

d x x x d dx x x x x x f x
d d d

λ
λ λ λ

λ λ λ =

⎧ ⎫′ ≡ ≡ = ⎨ ⎬
⎩ ⎭
∑

A …
A … …L  

 
Define: 

   
( ) ( ) ( ) ( )

2 2
1 2 1 2

1 2 1 22 2

2

2

, , , ; , , , ;
, , , ; ln , , , ;

ln

N N
N N

d x x x d x x x dx x x x x x
d d d

d
d

λ λ
λ λ

λ λ λ

λ

′
′′ ≡ ≡ ≡

=

A … A …
A … …L

                                                                                                                        ( )
1

;
N

i
i

f x λ
=

⎧ ⎫
⎨ ⎬
⎩ ⎭
∑

 

 

Define:        ( ) ( );
; i

i

df x
f x

d
λ

λ
λ

′ ≡   and: ( ) ( ) ( )2

2

; ;
; i i

i

df x d f x
f x

d d
λ λ

λ
λ λ

′
′′ ≡ ≡  

 
 
Then: 

    
( ) ( ) ( ) ( )

( ) ( )
( )

( )
( ) ( )

1 2
1 2 1 2

1

1 1 1 1

, , , ;
, , , ; ln , , , ; ln ;

; ;
ln ; ;

; ;

N
N

N N i
i

N N N N
i i

i i
i i i ii i

d x x x d dx x x x x x f x
d d d

df x d f xd f x x
d f x f x

λ
λ λ λ

λ λ λ
λ λ λ

λ φ λ
λ λ λ

=

= = = =

⎧ ⎫′ ≡ ≡ = ⎨ ⎬
⎩ ⎭

′
= = = ≡

∑

∑ ∑ ∑ ∑

A …
A … …L

                                  

 

Next: 

       

( ) ( ) ( ){ }
( )
( )

( )
( )

( )
( ) ( ) ( ) ( )

( )
( )

( )

( ) ( ) ( )

( ) ( )
1 2

1 2

1 2
1 2

1 2

1 2
1

 , , , ;

1 2 1

; ; ;

; ; ;
       ; ; ;

; ; ;

;
       ; ; ;

;

       , , , ; ;
N

N

N
N

N

N
i

N
i i

x x x

N

d f x f x f x
d

f x f x f x
f x f x f x

f x f x f x

f x
f x f x f x

f x

x x x f x
λ

λ λ λ
λ

λ λ λ
λ λ λ

λ λ λ

λ
λ λ λ

λ

λ λ

=

′≡

⋅ ⋅ ⋅

⎧ ⎫′ ′ ′⎪ ⎪= + + + ⋅ ⋅ ⋅⎨ ⎬
⎪ ⎪⎩ ⎭
⎧ ⎫′⎪ ⎪= ⋅ ⋅ ⋅⎨ ⎬
⎪ ⎪⎩ ⎭

′= ⋅

∑
A …

…

… …

…
���	��


A … ( ) ( )2; ;Nf x f xλ λ⋅ ⋅…

 

 

Plug this result into: ( ) ( ) ( ) ( ){ }1 2 1 2 1 21 , , , ; ; ;N N N
dS x x x f x f x f x dx dx dx

d
λ λ λ

λ
= ⋅ ⋅ ⋅∫ … … …  to get: 

 

( ) ( ) ( ) ( ) ( )1 2 1 2 1 2 1 21 , , , , , , ; ; ; ; [ ]N N N NS x x x x x x f x f x f x dx dx dx E Sλ λ λ λ′ ′= ⋅ ⋅ ⋅ =∫ … A … … … A   i.e. [ ] 1E S ′ =A  
 

Now: [ ] 0E ′ =A ,  which follows from taking 
d

dλ
 of both sides of the P.D.F. normalization condition: 

 

( ) ( ) ( )1 2 1 2; ; ; 1N Nf x f x f x dx dx dxλ λ λ⋅ ⋅ ⋅ =∫ … …  
 
 



Fall 2012                                Analysis of Experimental Measurements                              B. Eisenstein/rev. S. Errede 

P598AEM Lecture Notes 11   8 

Proof: 

          

( ) ( ) ( )

( )
( )

( )
( )

( )
( )

( )

( ) ( ) ( )

( ) ( ) ( ) ( )
1 2

1 2 1 2

1 2
1 2 1 2

1 2

 , , , ;

1 2 1 2 1 2

; ; ; 0

; ; ;
   ; ; ; 0

; ; ;

   , , , ; ; ; ;
N

N N

N
N N

N

x x x

N N N

d f x f x f x dx dx dx
d

f x f x f x
f x f x f x dx dx dx

f x f x f x

x x x f x f x f x dx dx dx

λ

λ λ λ
λ

λ λ λ
λ λ λ

λ λ λ

λ λ λ λ

′≡

≡

⋅ ⋅ ⋅ =

⎧ ⎫′ ′ ′⎪ ⎪= + + + ⋅ ⋅ ⋅ =⎨ ⎬
⎪ ⎪⎩ ⎭

′= ⋅ ⋅ ⋅

∫

∫

∫
A …

… …

… … …
��������	�������


A … … …
[ ]

[ ] 0     . . .
E

E Q E D
′

′= =

A

A
�������������	������������


  

 

 

Then:  [ ] [ ] 0E E S′ ⋅ =A  (assuming [ ]E S λ=  is  finite) 
 

Since:  [ ] 1E S ′ =A   Then: [ ] [ ] [ ] 1E S E S E′ ′− ⋅ =A A  
 

But:     ( )[ ] [ ] [ ] cov ,E S E S E S′ ′ ′− ⋅ ≡A A A    ⇒  ( )cov , 1S ′ =A   ⇒  S and ′A  are positively correlated! 

Recall that the correlation coefficient ( ) cov( , ),
x y

x yx yρ
σ σ

≡  has magnitude ( ) ( )cov ,
, 1

x y

x y
x yρ

σ σ
= ≤  

Thus, here:   ( ) ( )
 1

2
2

2 2 2 2

cov , 1, 1
S S

S
Sρ

σ σ σ σ

=

′ ′

′
′ = = ≤

A A


����
A

A     ⇒    variance of the estimator S:   2
2

1
Sσ σ ′

≥
A

 

 

However, the variance of  ( )lnd
d

λ
λ

′ ≡A L  is defined as:   
 

   2 2 2[( [ ]) ] [ ] [ ]E E E Eσ ′ ′ ′ ′ ′≡ − = −A A A A A( )2 2

0

[ ]E
=

′= A
��	�


 

 

 

Thus:                       

( )

2
2 2 2

1 1 1
[ ]

ln
S E dE

d

σ
σ

λ
λ

′

≥ = =
′ ⎡ ⎤⎧ ⎫

⎢ ⎥⎨ ⎬
⎩ ⎭⎢ ⎥⎣ ⎦

A A
L

  

 

We define the so-called “information” ( )I λ  of the sample (with respect to the parameter λ ) as: 
 

( ) ( )
2

2 2[ ] lndI E E
d

λ λ σ
λ ′

⎡ ⎤⎧ ⎫′≡ = =⎢ ⎥⎨ ⎬
⎩ ⎭⎢ ⎥⎣ ⎦

AA L      Then:  
( )

2 1
S I

σ
λ

≥ .     

 

Thus we see that  large  information ( )I λ   ⇒   small variance σS
2  of the estimator S and vice versa. 
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Had the estimator  S  been biased,  then with ( ) [ ] 0B E Sλ λ≡ − ≠  we would have instead arrived 
at the general form of this inequality: 
 

      

( ) ( )

( )

2 2

2
2

1 1

( )
ln

S

dB dB
d d

I dE
d

λ λ
λ λ

σ
λ

λ
λ

⎧ ⎫ ⎧ ⎫
+ +⎨ ⎬ ⎨ ⎬

⎩ ⎭ ⎩ ⎭≥ =
⎡ ⎤⎧ ⎫
⎢ ⎥⎨ ⎬
⎩ ⎭⎢ ⎥⎣ ⎦

L
 

 
which is known as the Rao-Cramér-Frechet (RCF) Inequality, aka the “Information Inequality”.  
It gives a rigorous lower bound on the variance 2

Sσ  associated with a biased estimator S of the 
parameter λ . 
 

     We’re not quite done here… an interesting relationship exists between 2[ ]E ′A  and [ ]E ′′A  

or equivalently, exists between ( )
2

lndE
d

λ
λ

⎡ ⎤⎧ ⎫
⎢ ⎥⎨ ⎬
⎩ ⎭⎢ ⎥⎣ ⎦

L  and ( )
2

2 lndE
d

λ
λ

⎡ ⎤
⎢ ⎥
⎣ ⎦

L , namely that: 

2[ ] [ ]E E′ ′′= −A A , or equivalently, that: ( ) ( )
2 2

2ln lnd dE E
d d

λ λ
λ λ

⎡ ⎤ ⎡ ⎤⎧ ⎫ = −⎢ ⎥⎨ ⎬ ⎢ ⎥
⎩ ⎭⎢ ⎥ ⎣ ⎦⎣ ⎦

L L .  

 

We showed above that the expectation value of ( )1 2, , , ;Nx x x λ′A …  was zero, i.e. [ ] 0E ′ =A .  
 
What is the expectation value of ( )1 2, , , ;Nx x x λ′′A … ? i.e. what is: 
 

( )
2 2

2 2[ ] ln ?d d dE E E E
d d d

λ
λ λ λ
′ ⎡ ⎤ ⎡ ⎤⎡ ⎤′′ = = = =⎢ ⎥ ⎢ ⎥⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

A AA L  

Repeating what we did above in the determination of [ ]E ′A ,  this time we take 
2

2

d
dλ

 of both sides 

of the P.D.F. normalization condition: 
 

( ) ( ) ( )1 2 1 2; ; ; 1N Nf x f x f x dx dx dxλ λ λ⋅ ⋅ ⋅ =∫ … …  
 

( ) ( ) ( )

( )
( )

( )
( )

( )
( )

( )

( ) ( ) ( )

( ) ( ) ( ) ( )

1 2

2

1 2 1 22

1 2
1 2 1 2

1 2

 , , , ;

1 2 1 2 1

; ; ; 0

; ; ;
   ; ; ; 0

; ; ;

   , , , ; ; ; ;

N

N N

N
N N

N

x x x

N N

d f x f x f x dx dx dx
d

f x f x f xd f x f x f x dx dx dx
d f x f x f x

d x x x f x f x f x dx d
d

λ

λ λ λ
λ

λ λ λ
λ λ λ

λ λ λ λ

λ λ λ λ
λ

′≡

⋅ ⋅ ⋅ =

⎧ ⎫′ ′ ′⎪ ⎪= + + + ⋅ ⋅ ⋅ =⎨ ⎬
⎪ ⎪⎩ ⎭

′= ⋅ ⋅ ⋅

∫

∫
A …

… …

… … …
��������	�������


A … … 2 0Nx dx =∫ …
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( ) ( ) ( ) ( ){ }

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ){ }

( ) ( ) ( ) ( )

1 2 1 2 1 2

1 2 1 2 1 2

1 2 1 2 1 2

1 2 1 2 1 2

   , , , ; ; ; ; 0

   , , , ; ; ; ;

   , , , ; ; ; ; 0

   , , , ; ; ; ;

N N N

N N N

N N N

N N

d x x x f x f x f x dx dx dx
d

x x x f x f x f x dx dx dx

dx x x f x f x f x dx dx dx
d

x x x f x f x f x dx dx

λ λ λ λ
λ

λ λ λ λ

λ λ λ λ
λ

λ λ λ λ

′= ⋅ ⋅ ⋅ =

′′= ⋅ ⋅ ⋅

′+ ⋅ ⋅ ⋅ =

′′= ⋅ ⋅ ⋅

∫

∫

∫

A … … …

A … … …

A … … …

A … … …

( ) ( )
( )

( )
( )

( )
( )

( )

( ) ( ) ( )

( ) ( )

1 2

1 2
1 2

1 2

 , , , ;

1 2 1 2

1 2 1

; ; ;
   , , , ;

; ; ;

                                       ; ; ; 0

   , , , ; ;

N

N

N
N

N

x x x

N N

N

dx

f x f x f x
x x x

f x f x f x

f x f x f x dx dx dx

x x x f x f

λ

λ λ λ
λ

λ λ λ

λ λ λ

λ λ

′≡

⎧ ⎫′ ′ ′⎪ ⎪′+ + + +⎨ ⎬
⎪ ⎪⎩ ⎭

× ⋅ ⋅ ⋅ =

′′= ⋅

∫

∫
A …

A … …
��������	�������


… …

A … ( ) ( )

( ) ( ) ( ) ( )
2

2 1 2

[ ]

2
1 2 1 2 1 2

[ ]

2 2

; ;

   , , , ; ; ; ; 0

   [ ] [ ] 0      or:      [ ] [ ]      

N N

E

N N N

E

x f x dx dx dx

x x x f x f x f x dx dx dx

E E E E

λ λ

λ λ λ λ

′′≡

′≡

⋅ ⋅

′+ ⋅ ⋅ ⋅ =

′′ ′ ′ ′′= + = = −

∫

∫
A

A

… …
�������������	������������


A … … …
�������������	������������


A A A A

  

  

. . .Q E D

 

 
Thus, we see that: 

           

( )

( )

2 2

2 2

2 2
2

       [ ]                    ln

[ ] ln

d d dE E E E
d d d

d dE E E
d d

λ
λ λ λ

λ
λ λ

′ ⎡ ⎤ ⎡ ⎤⎡ ⎤′′ = = =⎢ ⎥ ⎢ ⎥⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦
⎡ ⎤ ⎡ ⎤⎛ ⎞ ⎛ ⎞′= − = − = −⎢ ⎥ ⎢ ⎥⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

A AA

AA

L

L
 

 

     The relation between these two expectation values, 2[ ] [ ]E E′ ′′= −A A  is quite an amazing, and 
very general result – since it was derived without reference to a specific form of P.D.F. – it is 
therefore valid/holds for any P.D.F!  
 

     The relation 2[ ] [ ]E E′ ′′= −A A  says that the negative of the expectation value of the (negative!) 
curvature – the 2nd derivative – of the log of the likelihood function (which is an N-dimensional 
integral convolving ( )1 2, , , ;Nx x x λ′′A … with the product factor of  N  P.D.F.’s, integrated over all 
of the xi’s,  over their entire allowed physical ranges) is equal to the expectation value of the 
square of the slope  – the 1st derivative – of the log of the likelihood function (which is another 
N-dimensional integral convolving ( )2

1 2, , , ;Nx x x λ′A … with the product factor of  N  P.D.F.’s, 
integrated over all of the xi’s,  over their entire allowed physical ranges). 
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      Restating this somewhat less rigorously, but in a more physical sense: 2[ ] [ ]E E′ ′′= −A A  tells us 
physically that the negative of the integrated-over “average” value of the (negative!) curvature of 
the log of the likelihood function is equal to the integrated-over “average” value of the square of 
the slope of the log of the likelihood function! Again, 2[ ] [ ]E E′ ′′= −A A  is a very general result – it is 
valid/holds for any P.D.F! One can also physically understand now why [ ] 0E ′ =A . 
 

The above Information Inequalities can therefore additionally be expressed in terms of [ ]E ′′A , 
the Information Inequality for unbiased estimators, S is: 
 

( ) ( ) ( )
2

2 2 2 2

2

1 1 1 1 1 1
[ ] [ ]

lnln
S E E Idd EE dd

σ
σ λ

λλ λλ
′

≥ = = − = = − =
′ ′′ ⎡ ⎤ ⎡ ⎤⎧ ⎫

⎢ ⎥ ⎢ ⎥⎨ ⎬
⎣ ⎦⎩ ⎭⎢ ⎥⎣ ⎦

A A A
LL

 

 
The Rao-Cramér-Frechet (RCF) Inequality (aka Information Inequality ) for biased 
estimators, S  with ( ) [ ] 0B E Sλ λ≡ − ≠  is: 

( ) ( ) ( )

( )

( )

( )

( )

( )

( )

2 2 2

2
2 2

2 2 2

2 2

2

1 1 1

[ ] [ ]

1 1 1

lnln

S

dB dB dB
d d d

E E

dB dB dB
d d d

Idd EE dd

λ λ λ
λ λ λ

σ
σ

λ λ λ
λ λ λ

λ
λλ λλ

′

⎧ ⎫ ⎧ ⎫ ⎧ ⎫
+ + +⎨ ⎬ ⎨ ⎬ ⎨ ⎬

⎩ ⎭ ⎩ ⎭ ⎩ ⎭≥ = = −
′ ′′

⎧ ⎫ ⎧ ⎫ ⎧ ⎫
+ + +⎨ ⎬ ⎨ ⎬ ⎨ ⎬

⎩ ⎭ ⎩ ⎭ ⎩ ⎭= = − =
⎡ ⎤ ⎡ ⎤⎧ ⎫
⎢ ⎥ ⎢ ⎥⎨ ⎬

⎣ ⎦⎩ ⎭⎢ ⎥⎣ ⎦

A A A

LL

      

 

 

These Information Inequalities give rigorous lower bounds on the variance 2
Sσ  associated with 

the estimator S of the parameter λ . 
 

     The physical meaning of the relation ( ) ( )2[ ] [ ]E Eλ λ′ ′′= −A A   also enables us to 
understand/realize some amazing physical/mathematical properties of the (log of the) likelihood 

function ( )ln λL , because physically, ( ) ( )lnd
d

λ λ
λ

′ =A L  is the local slope (i.e. 1st derivative) 

of the ( )ln λL  vs. λ  curve at the point λ , and ( ) ( )
2

2 lnd
d

λ λ
λ

′′ =A L  is the local (negative!) 

curvature (i.e. 2nd derivative) of the ( )ln λL  vs. λ  curve at the point λ . 
 

 In the limit of very large  N  (i.e. N →∞ ) the 1-parameter likelihood function ( )λL   is Gaussian/ 

normal in that parameter:   ( ) ( )2* 22Ce λ
λ λ σλ ∗− −

=L  Then:  ( ) ( ) ( )2* 2ln ln     2C
λ

λ λ λ λ σ ∗= = − −A L .   
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At the maximum of the likelihood: *λ λ=  then: ( ) ( )* *ln ln Cλ λ= =A L , thus: ( )*C λ= L ,  
thus we can write:  

( ) ( ) ( )2* 22* e λ
λ λ σ

λ λ ∗− −
=L L     or:   ( ) ( ) ( )2* 2      2

λ
λ λ λ λ σ ∗

∗= − −A A  
 

Then for: *
1 1σ λ

λ λ σ ∗
∗

± ≡ ±   or:  ( )*
1 1σ λ

λ λ σ ∗
∗

± − = ±         then:     ( ) ( )* 1 2
1 eσλ λ∗ −
± =L L    

and:    ( ) ( )* 1
1 2σλ λ∗
± = −A A  or:  ( ) ( )* 1

1 2ln lnσλ λ∗
± = −L L   or:  ( ) ( ) ( )* 1

1 2ln ln ln σλ λ λ∗
±Δ ≡ − =L L L  

 

Then, we have the “conventional wisdom”  that  68.3% of the time the “true value” λ̂  will be 
within 1

λ
σ ∗±  of  λ∗ , etc.  

 

In the very large  N  limit, the ( )ln λL  vs. λ  curve is an (inverted) parabola of the general form: 
 

( ) ( )2* 2ln 2 constantλλ λ λ σ⎡ ⎤= − − −⎢ ⎥⎣ ⎦
L    ⇔   ( ) ( )2

0y x A x x B= − − −  
 
This relation is shown graphically in the figure below – the RHS (LHS) plot has a wide (narrow) 
parabola, respectively: 

 

00

( )ln λL

λ λ
*λ

( ) 1
2ln λΔ =L

*λ  

-OR-

*1
λ

σ  

*
1σλ−  *

1σλ+  *
1σλ+  *

1σλ−  

( ) 1
2ln λΔ =L

*1
λ

σ  *λ
σ *λ

σ  

( )*ln λL  

( )*
1ln σλ±L  

( )*ln λL

( )*
1ln σλ±L

( )ln λL  

 

When ( ) ( )
*

2

2 lnd
d λ λ

λ λ
λ

=

′′ =A L is evaluated at the local maximum *λ λ=  of the ( )ln λL  function: 

  

    ( ) ( )*
* *

2

2 2

1lnd
dλ λ

λ λ λ

λ λ
λ σ=

=

′′ = = −A L    

 

When ( ) ( )lnd
d

λ λ
λ

′ =A L  is evaluated at the ( 1 λσ± ) *
1σλ λ±=  points of the ( )ln λL  function on 

either side of the local maximum *λ λ= :  
 

            ( ) ( ) ( ) *

*
1 * * *1 *

1

*

2 2

1lnd
dσ

σ
σ

λ
λ λ

λ λ λ λ λλ λ

λ λ σ
λ λ

λ σ σ σ±
±

±

=
=

=

−
′ = = − = ± = ±A L .   

 

In the vicinity of the local maximum 
λ = λ*, the curvature is negative. 
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Thus: ( ) ( ) ( ) *

*
1 * **

1 *
1

2 2*2
2

2 2 2

1lnd
dσ

σ
σ

λ
λ λ

λ λ λλ λ
λ λ

λ λ σ
λ λ

λ σ σ σ±

±
±

=
=

=

⎛ ⎞− ⎛ ⎞⎛ ⎞′ ⎜ ⎟= = − = ± =⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠
A L . 

 
     In the limit of very large N  (i.e. N →∞ ), if we find/determine the *

1σλ±  points associated 
with reducing the value of ( )ln λL  function by a factor of 1/2  from the value of the ( )ln λL  

function at its local maximum, *λ λ= , this corresponds to the *1
λ

σ± , 68.3% central/double-

sided confidence level – i.e. *
1σλ−  and *

1σλ+ are respectively the *1
λ

σ− (low) and *1
λ

σ+  (high) 

points on either side of the local maximum, *λ λ= . 
 

 In the limit of very large N  (i.e. N →∞ ), we have four equivalent methods of determining λσ : 
  

1.) Compute the Root Mean Square Deviation – the square root of the variance  2
λσ   of the  

     Likelihood Distribution, ( )λL . 
 

2.) Determine the ( 1 λσ± ) *
1σλ λ±=  points on either side of the local maximum *λ λ= of the  

     ( )ln λL  function from: ( ) ( ) ( )* * 1
1 2ln ln ln σλ λ λ±Δ = − =L L L . 

  

3.) Compute the (negative!) curvature at the local maximum *λ λ=  of the ( )ln λL  function:  

( )
*

2

2 2

1lnd
d λλ λ

λ
λ σ

=

− =L             

4.) Compute the square of the local slope(s) of the ( )ln λL  function at the ( 1 λσ± ) low high,λ λ λ=     
      points: 

( )
*
1

2

2

1lnd
d

σ
λλ λ

λ
λ σ

±=

⎛ ⎞ =⎜ ⎟
⎝ ⎠

L . 
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     Method 2.) above can also be used for obtaining more than just the *1
λ

σ± (68.3% double-

sided/central Confidence Level limits on the *λ parameter! From the table on central/double-
sided Confidence Level Limits for Gaussian Distributions in P598AEM Lect. Notes 8 (p. 6),  
we re-write it for use here, in terms of the ( ) ( ) ( )* *

1ln ln ln σλ λ λ±Δ = −L L L  value associated 

with nσ λσ  . As can be seen from the table below, the relation is very simple: 
 

( ) ( ) ( )* *ln ln ln
2n
n

σ

σλ λ λ±Δ = − =L L L . 
 

#nσ λσ=  ( ). . %dsC L  ( )ln λΔ L  

1.0   68.2689 0.5 
2.0   95.4500 1.0 
3.0   99.7300 1.5 
4.0   99.9937 2.0 
5.0   99.9999 2.5 
6.0 100.0000 3.0 

 
     What does the ( )ln λL  vs. λ  curve look like when  N  is finite? This depends on the nature 

of the PDF associated with the random variable x. In general, for finite statistics, the ( )ln λL  
vs. λ  can become “noisy” – i.e. it may not be a perfectly smooth curve – having increased 
statistical fluctuations in it as  N  decreases from ∞ . Depending on the nature of the PDF 
associated with the random variable x , it may also become increasingly asymmetrical as  N  
decreases from ∞ , and may appear something like the curves shown in the figure below: 
 

 

00

( )ln λL

λ λ
*λ

( ) 1
2ln λΔ =L

*λ  

-OR-

*1
λ

σ +  

*
1σλ−  *

1σλ+  *
1σλ+  *

1σλ−  

( ) 1
2ln λΔ =L

*1
λ

σ −  *λ
σ −  *λ

σ +  

( )*ln λL  

( )*
1ln σλ±L  

( )*ln λL

( )*
1ln σλ±L

( )ln λL  

 
 
     Clearly, in this asymmetrical situation, the individual results from using the 4 above methods 
of determining λσ   can begin to diverge from each other as  N  decreases from ∞ . Of the four, 
method # 2  ( )( )ln 2nσλΔ =L  is the most “robust”/most widely accepted.  
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     We see e.g. for the 1 σ±  double-sided/central 68.3% Confidence Interval, with  
( ) 1

2ln λΔ =L ,  that ( ) ( )* *
* * * *

1 11     1σ σλ λ
λ λ σ λ λ σ− +

− +− = ≠ − = , hence the (asymmetrical) 1 σ±  low-
side/high-side uncertainties associated with the M.L.M.’s most probable value result are quoted 

as: *

*

 *
 

 λ

λ

σ

σ
λ

+

−

+

−
,  e.g. 0.10

0.04 5.04  Volts+
− . 

 

     Clearly, in this asymmetrical situation, for method # 4, the (local) slopes of the ( )ln λL  vs. λ  
curve at lowλ λ=  vs. highλ λ=  are not equal, but that is simply because they are anti-correlated 
with the numerical values of their respective sigmas, since they are inversely related to each 
other: 

         ( )
( )* *1

2

2
1lnd

d
σλ λ λ

λ
λ σ

−

−
=

⎛ ⎞ =⎜ ⎟
⎝ ⎠

L     and:    ( )
( )* *1

2

2
1lnd

d
σλ λ λ

λ
λ σ

+

+
=

⎛ ⎞ =⎜ ⎟
⎝ ⎠

L  

Or simply: 

  ( )
* *1

1ln         d
d

σλ λ λ

λ
λ σ

−

−
=

=L       and:     ( )
* *1

1ln         d
d

σλ λ λ

λ
λ σ

+

+
=

=L  

 

     For method # 3, determining the curvature (i.e. 2nd derivative) of the ( )ln λL  curve at 
*λ λ= yields only a single number for λσ , which is actually a weighted average of  λσ

−  and λσ
+ ,  

This could be unfolded/unweighted, e.g. using the local slope information of the ( )ln λL  vs. λ   
curve at lowλ λ=  & highλ λ= , but if one goes to all that effort, why not just use method # 4 instead? 
 
    Method # 1 suffers from the same problems as method # 3. Hence why method # 2 

( )( )ln 2nσλΔ =L  is the most popular/most widely used method – it’s very easy to carry out, it 
works with any likelihood function, and is also easily understood by others... 
 
     Please see/read Muon Decay Asymmetry MLM Fit Example, posted on the Physics 
598AEM Software webpage, for a detailed discussion of the use of the MLM to obtain an 
estimate of the asymmetry parameter, *α and corresponding *1

α
σ±  statistical uncertainties,  

from a large sample N  of  fully-polarized ee v vμμ+ +→ + +  decays. 
 
 
 
 


