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P598AEM Lecture Notes 12  1 

Mini-Review of the Main Points from P598AEM Lecture 11: 
 
     Consider carrying out  N  “experiments” where for each experiment, we perform a single 
measurement ix  of a random variable x,  and where we are trying to “determine” (i.e. estimate )  
a single parameter λ  from the collection (ensemble) of the  N  measurements of ix . 
 
     Later, when we look at practical schemes, we will treat the case of several measurements per 
experiment and also the (simultaneous) determination of several parameters.  
 

     After we have carried out  N  independent measurements of the random variable x: 1 1, , , Nx x x… ,  
we construct a function   S(x1,", xN )  whose value is an estimator of the parameter of interest λ .  
 
     The numerical value of the function  S  (“the estimator”)  is itself a random variable. 
(e.g. repeat the N  “experiments” 106 times – the value of  S  for one repetition will be similar,  
but not identical to those obtained for  S  in the other 99999 repetitions). Thus,  S  has a mean and 
a width , along with higher moments of the S-distribution…  
 

We define the bias ( )B λ  associated with the estimator  S  of the parameter λ  as: ( ) [ ]B E Sλ λ≡ −      
 

A “good estimator” will be unbiased, i.e. have ( ) [ ] 0B E Sλ λ≡ − = .  Then: [ ]E S λ= . 
 

Let ( ) ;f x λ  be the P.D.F. describing the measurement of  the random variable x.  λ  is the 
parameter we wish to determine by a series of measurements   x1,",xN .  The joint P.D.F. of this 
series is ( ) ( ) ( ) ( )1 2 1 2, , , ; ; ; ;N Nf x x x f x f x f xλ λ λ λ= ⋅ ⋅ ⋅" …   provided that the  N  individual 
measurements of ix  are independent.   

Define:   ( ) ( )1 2
1

, , , ; ;
N

N i
i

x x x f xλ λ
=

≡∏…L  

Define:    ( ) ( ) ( )1 2 1 2
1

, , , ; ln , , , ; ln ;
N

N N i
i

x x x x x x f xλ λ λ
=

≡ =∑A … …L  

Define:   ( ) ( ) ( ) ( )1 2
1 2 1 2

1

, , , ;
, , , ; ln , , , ; ln ;

N
N

N N i
i

d x x x d dx x x x x x f x
d d d

λ
λ λ λ

λ λ λ =

⎧ ⎫′ ≡ ≡ = ⎨ ⎬
⎩ ⎭
∑

A …
A … …L  

Define:   ( ) ( ) ( ) ( )
2 2 2

1 2
1 2 1 22 2 2

1

, , , ;
, , , ; ln , , , ; ln ;

N
N

N N i
i

d x x x d dx x x x x x f x
d d d

λ
λ λ λ

λ λ λ =

⎧ ⎫′′ ≡ ≡ = ⎨ ⎬
⎩ ⎭
∑

A …
A … …L  

 
We then showed (for unbiased estimators S) that a lower bound existed for the variance of S:  
 

( ) ( ) ( )
2

2 2

1 1 1 1
[ ] [ ]S E E I

σ
σ λ λ λ′

≥ = = − =
′ ′′A A A

 

 

Where: ( ) ( ) ( ) ( ) ( )
2 2

2
2[ ] ln [ ] lnd dE E E E I

d d
λ λ λ λ λ

λ λ
⎡ ⎤ ⎡ ⎤⎧ ⎫′ ′′= = − = − ≡⎢ ⎥⎨ ⎬ ⎢ ⎥
⎩ ⎭⎢ ⎥ ⎣ ⎦⎣ ⎦

A AL L   

 
 
 

I(λ) is called the 
Information 
of the sample 

associated with 
the parameter λ.
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More Information on Information: 

The Information ( ) ( ) ( ) ( ) ( )
2 2

2
2[ ] ln [ ] lnd dI E E E E

dl d
λ λ λ λ λ

λ
⎡ ⎤ ⎡ ⎤⎧ ⎫′ ′′≡ = = − = −⎢ ⎥⎨ ⎬ ⎢ ⎥
⎩ ⎭⎢ ⎥ ⎣ ⎦⎣ ⎦

A AL L   

 
depends (linearly) on  N, the number of measurements carried out in the experiment.   
 

We can show that ( )I λ  depends on the P.D.F. ( );f x λ , but does not depend on the particular 
values of the individual xi’s measured in the experiment. 

In P598AEM Lect. Notes 11 (p. 6),  we defined the quantity: ( ) ( )
( )

;
;

;
i

i
i

f x
x

f x
λ

φ λ
λ

′
≡  and showed that:  

 

( ) ( ) ( )
( )

( )
( ) ( )1 2

1 1 1 1

; ;
, , , ; ln ; ;

; ;

N N N N
i i

N i i
i i i ii i

df x d f xdx x x f x x
d f x f x

λ λ λ
λ λ φ λ

λ λ λ= = = =

′
′ = = = ≡∑ ∑ ∑ ∑A …  

Then:  

       

( ) ( ) ( )

( ){ } ( ) ( )

( ){ } ( ) ( )

( ){ } ( )

2

1 1

2

1 1

2

1 1

2

1

[ ] ; ;

                ; ; ;

                ; ; ;

                ; ; ;

N N

i j
i j

N N N

i i j
i i j i

N N N

i i j
i i j i

N

i i j
i

E E x x

E x x x

E x E x x

E x E x E x

λ φ λ φ λ

φ λ φ λ φ λ

φ λ φ λ φ λ

φ λ φ λ φ

= =

= = ≠

= = ≠

=

⎡ ⎤
′ = ⎢ ⎥

⎣ ⎦
⎡ ⎤

= +⎢ ⎥
⎣ ⎦

⎡ ⎤ ⎡ ⎤= + ⎣ ⎦⎣ ⎦

⎡ ⎤= + ⋅⎡ ⎤⎣ ⎦⎣ ⎦

∑ ∑

∑ ∑∑

∑ ∑∑

∑

A

( )
1

N N

i j i
λ

= ≠

⎡ ⎤⎣ ⎦∑∑

         

 

Next, we show that ( ); 0iE xφ λ =⎡ ⎤⎣ ⎦ .  Take 
d

dλ
of:  ( ){ }1 ;f x dxλ= ∫ ,  which yields: 

 

        ( ) ( )
( ) ( ) ( );

0 ; ; ;
;

f x
f x dx f x dx E x

f x
λ

λ λ φ λ
λ

′
′= = = ⎡ ⎤⎣ ⎦∫ ∫  

Thus:  

       
( ) ( ){ } ( ) ( )

( ) ( ) ( )

22 2

1 1

2 2

[ ] ; ; ;

                ; ; ;

N N

i i i
i i

i i i

E E x x f x dx

N x f x dx NE x

λ φ λ φ λ λ

φ λ λ φ λ
= =

⎡ ⎤′ = =
⎣ ⎦

⎡ ⎤= = ⎣ ⎦

∑ ∑∫

∫

A
 

 
Hence, the Information: 
 

( ) ( ) ( ) ( ) ( )
( ) ( )

2 2
2 2

1 1 1

;
[ ] [ ] ; ln ;

;

N N N
i

i i
i i ii

f x dI E E NE x NE NE f x
f x d

λ
λ λ λ φ λ λ

λ λ= = =

⎡ ⎤ ⎡ ⎤⎛ ⎞′⎡ ⎤ ⎛ ⎞⎢ ⎥′ ′′= = − = = = ⎢ ⎥⎜ ⎟ ⎜ ⎟⎢ ⎥ ⎜ ⎟⎢ ⎥⎣ ⎦ ⎝ ⎠⎢ ⎥⎝ ⎠ ⎣ ⎦⎣ ⎦
∑ ∑ ∑A A  

 

simply depends on the  form  of the P.D.F. of the measurements ( );f x λ ,  and also depends 
linearly on the number  of measurements, N.  
 

Since the N   
measurements 

of the xi are 
independent. 
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Finally, for unbiased estimators, the  lower bound on the variance of  S  is: 
 

( ) ( ) ( ) ( )

( )
( )

( )

2
2 2

2

1

2 2

11

1 1 1 1 1
[ ] [ ] ;

1 1              
; ln ;
;

S N

i
i

NN
i

i
ii i

I E E NE x

df x NE f xNE df x

σ
σ λ λ λ φ λ

λ λ
λλ

′

=

==

≥ = = = − =
′ ′′ ⎡ ⎤

⎢ ⎥⎣ ⎦

= =
⎡ ⎤ ⎡ ⎤⎛ ⎞ ⎛ ⎞′
⎢ ⎥ ⎢ ⎥⎜ ⎟ ⎜ ⎟

⎝ ⎠⎢ ⎥ ⎢ ⎥⎣ ⎦⎝ ⎠⎣ ⎦

∑

∑∑

A A A

 

 
A minimum variance estimator is a choice of  S  for which the equality holds in the above 
relation – i.e. (in the unbiased case): 
 

( ) ( ) ( ) ( )

( )
( )

( )

2
2 2

2

1

2 2

11

1 1 1 1 1
[ ] [ ] ;

1 1              
; ln ;
;

S N

i
i

NN
i

i
ii i

I E E NE x

df x NE f xNE df x

σ
σ λ λ λ φ λ

λ λ
λλ

′

=

==

= = = = − =
′ ′′ ⎡ ⎤

⎢ ⎥⎣ ⎦

= =
⎡ ⎤ ⎡ ⎤⎛ ⎞ ⎛ ⎞′
⎢ ⎥ ⎢ ⎥⎜ ⎟ ⎜ ⎟

⎝ ⎠⎢ ⎥ ⎢ ⎥⎣ ⎦⎝ ⎠⎣ ⎦

∑

∑∑

A A A

 

 
     We recall (P598AEM Lect. Notes 4) that the covariance inequality became an equality when 
the variables were linearly related  (specifically: ( )cov , 1x y = ±  if y = ax + b ). 

The covariance here is:  cov( , )S ′A ,  so the equality will hold if:  ( ) rS tλ′ = +A , where  r  and  t  
are “constants”, i.e. they do not depend on 1 2, , , Nx x x… ,  (but they can/may depend on λ ).  
 

Recall that (by definition),  S  cannot  be a function of λ , i.e. ( )S fcn λ≠ . 
 

Also, recall that ( )[ ] 0E λ′ =A .  Thus: ( )[ ]E rS tλ′ = +A    ⇒   0 [ ]rE S t= + ,  or:  [ ]t rE S= − . 
 

Using this, we can rewrite:   ( ) [ ]( )rS t r S E Sλ′ = + = −A  
 

Thus, if we have an unbiased estimator S, for which ( ) ( ) ( ){ }[ ]r S E Sλ λ λ′ = ⋅ −A  then the variance 
of the unbiased estimator S is a minimum.   
 

The condition ( ) { }[ ]r S E Sλ′ = ⋅ −A can be shown to be necessary and sufficient for the variance of 
the unbiased estimator S to be a minimum. 
 
Let us assume that we have found such an unbiased estimator S, satisfying:  
 

    ( ) ( ) { }[ ]r S E Sλ λ′ = ⋅ −A  

Then:     ( ) ( ) { }22 2 [ ]r S E Sλ λ′ = ⋅ −A  

And:           ( ) ( ) ( ) ( )
2

2 2 2 2 2

  

[ ] { [ ]}

S

SE r E S E S r I
σ

λ λ λ σ λ

≡

′ ⎡ ⎤= − = =⎣ ⎦A
���	��
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Since this is a minimum variance unbiased estimator, then: 
( )

2 1
S I

σ
λ

=  

Hence:   
( ) ( )

2
2 2

1 1
S

SI r
σ

λ λ σ
= =     or:   

( )
4

2

1
S r

σ
λ

=    or:   
( )

2 1
S r

σ
λ

=  

 

Thus, once we find  ( ) ( ){ }[ ]r S E Sλ λ′ = −A ,  we can immediately determine ( )2 1S rσ λ= . 
 
     Let us return now to the “weighted mean” example that we worked on in P598AEM Lecture 11, 
where we had  N  independent measurements 1 2, , , Nx x x…  of the random variable  x  described by 

the Gaussian P.D.F.   ( ) ( )2 221 ;
2  

xf x e α σα
π σ

− −=   and which led to: 

 

             ( ) ( ) ( )2

2
1

1ln      constant
2

N
i

i i

x α
α α

σ=

−
≡ = − +∑A L  

 

                       ( ) ( ) ( )
2

1

ln
   

N
i

i i

d d x
d d
α α αα
α α σ=

−′ ≡ ≡ = +∑
A

A
L

 

 

and the estimator  S  (for the value of  α  which maximizes the above ( )αA ), which (here in this 
case) is the weighted mean: 
 

                  S =

xi

σ i
2

i=1

N

∑
1
σ i

2
i=1

N

∑
   (n.b. previously, we called this *α ) 

 

Then:              
2 2 2 2

1 1 1 1

2 2 2 2
1 1 1 1

ˆ[ ] 1

ˆ ˆ[ ]
1 1 1 1

N N N N
i i

i i i ii i i i
N N N N

i i i ii i i i

x E x x

E S E x xσ σ σ σ α

σ σ σ σ

= = = =

= = = =

⎡ ⎤ ⎛ ⎞
⎜ ⎟⎢ ⎥
⎜ ⎟⎢ ⎥= = = = = =
⎜ ⎟⎢ ⎥
⎜ ⎟⎢ ⎥⎣ ⎦ ⎝ ⎠

∑ ∑ ∑ ∑

∑ ∑ ∑ ∑
 

 

Rewrite:         ( ) { }
2

1
2 2 2 2 2

1 1 1 1 1
2

1

1 1
1

N
i

N N N N N
ii i i
N

i i i i ii i i i i

i i

x
x x Sα σαα α α
σ σ σ σ σ

σ

=

= = = = =

=

⎧ ⎫
⎪ ⎪⎧ ⎫ ⎧ ⎫− ⎪ ⎪′ = = − = − = −⎨ ⎬⎨ ⎬ ⎨ ⎬

⎩ ⎭ ⎩ ⎭⎪ ⎪
⎪ ⎪⎩ ⎭

∑
∑ ∑ ∑ ∑ ∑

∑
A  

This is of the form:  ( ) ( ){ } { }2
1

1[ ]
N

i i

r S E S Sα α α
σ=

⎧ ⎫
′ = − = −⎨ ⎬

⎩ ⎭
∑A  

Since:             [ ]E S α= ,  and (here): ( ) ( )( )2 2 2
1

1 1 1     
N

iS i

r fcn
α

α α
σ σ σ=

= = = ≠∑  

 

So we have shown that  S  is an unbiased, minimum variance estimator  of the parameter α .   
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The variance of the estimator S: 
( )

2 2

2
1

1 1
1S N

i i

rασ σ
α

σ=

= = =

∑
       or:       2 2 2

1

1 1 1N

iS iασ σ σ=

= =∑  

In the case of σ i
2 = σ 2  (i.e. “equal errors”) then:  2 2 2

1 1

S

N

ασ σ σ
= = ,    and:   S Nα

σσ σ= =     √√  

 

     Actually, we could have arrived at the same result for 21 ασ  simply by doing error propagation 
(assuming small uncertainties).  But we now know that the estimator  S  for finding α  when the  

P.D.F. is a Gaussian,  ( )2 221( ; )
2  

xf x e α σα
π σ

− −=  is the best there is! 

  
     This estimator  S  is unbiased, has minimum variance and leads to an estimate of  α  that is 
closer to the “true” value than any other estimate! 
 
 
For many calculations, it is useful to re-express the Information: 
 

( ) ( ) ( ) ( ) ( )
( ) ( )

2 2
2 2

1 1 1

;
[ ] [ ] ; ln ;

;

N N N
i

i i
i i ii

f x dI E E NE x NE NE f x
f x d

λ
λ λ λ φ λ λ

λ λ= = =

⎡ ⎤ ⎡ ⎤⎛ ⎞′⎡ ⎤ ⎛ ⎞⎢ ⎥′ ′′= = − = = = ⎢ ⎥⎜ ⎟ ⎜ ⎟⎢ ⎥ ⎜ ⎟⎢ ⎥⎣ ⎦ ⎝ ⎠⎢ ⎥⎝ ⎠ ⎣ ⎦⎣ ⎦
∑ ∑ ∑A A   

 

Consider:  ( )
1

ln ( ; )
N

i
i

f xλ λ
=

=∑A      and:      ( ) ( )
1 1

( ; )ln ;
( ; )

N N
i

i
i i i

f xd f x
d f x

λλ λ
λ λ= =

′
′ = =∑ ∑A  

 

Then:       ( )
2

2
1 1 1 1

N N N N

i i i i

d f f f f f f f
d f f f f

λ
λ= = = =

′ ′′ ′ ′ ′′ ′⎛ ⎞ ⎛ ⎞−′′ = = = −⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

∑ ∑ ∑ ∑A  

 

Thus:      ( ) ( ) ( )
2

2 2

1 1 1

 0

[ ] [ ] [ ]
N N N

i i i

f f fE E E E E E
f f f

λ λ λ
= = =

=

⎡ ⎤′′ ′ ′′⎡ ⎤ ⎛ ⎞ ⎡ ⎤′′ ′ ′= − = − = −⎢ ⎥⎜ ⎟⎢ ⎥ ⎢ ⎥
⎢ ⎥⎣ ⎦ ⎝ ⎠ ⎣ ⎦⎣ ⎦

∑ ∑ ∑A A A
��	�


 

 
We can show that the first term on the RHS is zero: 
 

Start with:    ( )1  ;f x dxλ= ∫  
 

Take 
d

dλ
:            0  f dx′= ∫  

 

Take another
d

dλ
:       0   f ff dx f dx E

f f
′′ ′′⎡ ⎤ ⎡ ⎤′′= = =⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦
∫ ∫  

 
 

∴            ( ) ( ) ( )2[ ] [ ]I E Eλ λ λ′ ′′= = −A A  
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For example, for  N  independent measurements of a Gaussian-distributed random variable x,   
we saw that the log likelihood was:  
 

 ( )
2

2
1

( )1        constant
2

N
i

i i

x αα
σ=

−
= − +∑A  

 

( ) 2
1

N
i

i i

x αα
σ=

−′ = +∑A  

 

( ) 2
1

1N

i i

α
σ=

′′ = −∑A  

 

Thus:   ( ) ( ) ( )2
2

1

1[ ] [ ]
N

i i

I E Eα α α
σ=

′ ′′= = − =∑A A  

 

And:          
( )

2

2
1

1 1
1N

i i

Iασ α
σ=

= =

∑
  as we have already seen. 

 
     It is interesting to note, from the above, that for Gaussian-distributed measurements of a 

random variable x, the Information ( ) 2
1

1N

i i

I α
σ=

=∑ ,  is constant, independent of the x’s or their 

expectation value, and depends only on the individual σ ‘s. 
 
 
Let us now look at measurements described by the Poisson Distribution:    
 

  ( ) ;
!

n
vvP n v e

n
−= =  probability of observing  n  events when  v  are expected. 

 

We have already seen that:   [ ]E n v=      and:  2
n vσ = . 

 
     Suppose that we are studying some phenomenon which we believe is Poisson distributed.  
Let us consider, for example, an “experiment” in which we count for one minute, and that  
x = n, the number of counts recorded.   We repeat the experiment  N  times, and then calculate 
the likelihood: 

    ( ) ( )1 1

 ;
!

ixN N
v

i
i i i

vP x v e
x

−

= =

= =∏ ∏L  

( ) ( ) ( ){ }
1

ln = ln ln !
N

i i
i

v v v x v x
=

= − + −∑A L  

 

( ) ( ) ( )
1

ln
1

N
i

i

d v d v xv
dv dv v=

⎧ ⎫′ = = = − +⎨ ⎬
⎩ ⎭

∑
A

A
L
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We solve for the value of  *v v= ,  at which  ( ) ( )*
* 0

d v
v

dv
′ = =

A
A : 

( ) ( )
*

*
* * * *

1 1
 

1 10 1 1
N N

i
iv v

i iv v

d v x xv N x N N x N
dv v v v v=

= ==

⎧ ⎫ ⎛ ⎞′= = = − + = − + = − + = −⎨ ⎬ ⎜ ⎟
⎝ ⎠⎩ ⎭

∑ ∑
A

A  

which yields the estimator: 
1

1 N

i
i

S v x x
N

∗

=

= = =∑ , the sample mean – i.e. simple/arithmetic mean.   

Note that this S  is an unbiased estimator, since:  *ˆ[ ]E S x v= =  
 
We also have:  
 

( ) ( ) { } { } { }
1 1 1

   
1 1 11 1

N N N
i

i i
i i i

d v x N xv x v x Nv N x Nv x v N
dv v v v v v v= = =

⎧ ⎫⎧ ⎫ ⎧ ⎫′ = = − = − = − = − = − = −⎨ ⎬ ⎨ ⎬ ⎨ ⎬
⎩ ⎭⎩ ⎭ ⎩ ⎭

∑ ∑ ∑
A

A

 

But from above:            *

1

1 N

i
i

S v x x
N =

= = =∑ , the sample mean,     and:    [ ]E S v=   

 

Thus:                       ( ) { } { } { }*
 [ ]N N Nv x v v v S E S

v v v
′ = − = − = −A  

 

This is of the form:  ( ) ( ) [ ]{ }v r v S E S′ = −A ,  
 
and is the necessary and sufficient condition such that this  S  is a minimum variance estimator!   
 

Furthermore, we see from comparing the above ( )v′A  relations, that:    
( )

2 1
v

v
Nr v

σ ∗

∗

∗
= = . 

 
Now let us return to the Maximum Likelihood Method (M.L.M.)  
 
We will show that this completely general method is unbiased and also gives minimum variance 
for the case of N →  ∞. 
 

The M.L.M. takes ( ) ( )1 2 1 2, , , ; ln , , , ;N Nx x x x x xλ λ≡A … …L   and evaluates it for measured 
random variables 1 2, , , Nx x x… .   
 

Then   ( ) ( ) ( )lnd d
d d

λ λ λ
λ λ

′ = =A A L    is   set to zero.   
 

Let us assume that the solution for ( ) 0λ′ =A  has only a single root, at: λ λ∗= .    
 

Then the estimator  S  is just λ∗ .  Note that this defines the estimator  S  implicitly,  rather than 
as an explicit function  ( )1 2, , , NS x x x… .   
 
In some cases (as in the previous examples, above),  S  turns out to be an explicit function 
( )1 2, , , NS x x x… , but this will not be true in general.   
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In order to handle this, we expand ( )λ′A  in a Taylor series about λ λ∗= : 
 

 ( ) ( )λ λ∗′ ′=A A ( ) ( ) ( ) ( )
 0

λ λ λ λ λ λ∗ ∗ ∗ ∗

=

′′ ′′+ − + = − +A … A …
�	


    since ( ) 0λ∗′ =A . 

 

Now:  
( ) ( )

( ) *1

;1
;

N
i

i i

f xd
N N d f x

λ λ

λ λ
λ λ

∗

=
=

′′ ⎧ ⎫′⎪ ⎪= ⎨ ⎬
⎪ ⎪⎩ ⎭

∑
A

   

 

If  N  is large enough, we can replace the sample mean 
1

1 N

i
i

Q
N =
∑  by the expectation value [ ]E Q . 

 

∴ for large  N : 
( ) ( )

( ) *

*

1

;
        

;

N
i

i i

f xdE
N d f x

λ λ

λ λ
λ λ=

=

⎡ ⎤′′ ⎧ ⎫′⎪ ⎪⎢ ⎥⇒ ⎨ ⎬
⎢ ⎥⎪ ⎪⎩ ⎭⎣ ⎦
∑

A
 

 
Since the set of  N  measurements all originate from the same P.D.F.,  the expectation value on 
the RHS is the same for all  i : 
 

( ) ( )
( ) ( )

**

2
*

2
1 1

;
     ln ;

;

N N
i

i
i ii

f xd dNE NE f x
d f x d λ λλ λ

λ
λ λ

λ λ λ= = ==

⎡ ⎤ ⎡ ⎤⎧ ⎫′⎪ ⎪′′ ⎢ ⎥⇒ = ⎢ ⎥⎨ ⎬
⎢ ⎥⎪ ⎪ ⎢ ⎥⎩ ⎭ ⎣ ⎦⎣ ⎦
∑ ∑A  

 

In fact, the expression on the right is just: [ ( ) ] [ ( )] ( )E E I
λ λ

λ λ λ∗
∗ ∗

=
′′ ′′= = −A A  

 

Thus, for  N  large enough, we can expand ( )λ′A in a Taylor series about λ λ∗= : 
 

( ) ( ) ( ) ( )( )      Iλ λ λ λ λ λ λ∗ ∗ ∗ ∗′ ′′= − + − − +A A " � "  
 

We assume that higher orders can be neglected (for small λ λ∗− )  and so:  
 

        ( ) ( ) ( )( )      d I
d

λ λ λ λ λ
λ

∗ ∗′= − −A A �      (n.b. ( )I λ∗  is just a number.) 
 

Solving this 1st-order linear differential equation for ( )λA : 
 

∴              ( ) ( )( ) ( )2* *1
2 constant lnIλ λ λ λ λ= − − + =A L  

 

And thus:            ( ) ( ) ( )( ) ( )2 2* * * 22 2I
Ce Ce λλ λ λ λ λ σλ

− − − −
= =L ,    with: 

( )
2

*

1
Iλσ λ

= . 

So for large  N,  we see that the likelihood function ( )λL   is  Gaussian near λ λ∗=  (the mean), 

and has a variance   ( ) ( )2 *var 1 Iλλ σ λ≡ = . 

We are estimating  λ ,  so we choose the estimator S λ∗= .   
 

Since  ˆλ λ∗ = ,  we see that  S  is an unbiased estimator of λ . 
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Since ( ) ( )( ) ( ){ }[ ]I I S E Sλ λ λ λ λ∗ ∗ ∗′ − − = −A � ,  which  is  of the general form:  
 

             ( ) ( ){ }[ ]r S E Sλ λ′ = −A ,   hence: 
( ) ( )

2
*

1 1
r Iλσ λ λ

= = . 

 

Thus, we also see that S λ∗=   is  a minimum variance estimator of  λ . 
 
Summary:     
 

     In the limit N  → ∞, the Maximum Likelihood Method (M.L.M.) gives an estimate of the 
parameter λ  which is unbiased and of minimum variance.   The likelihood function ( )λL  is 

Gaussian. The mean of the parameter λ  is λ∗ , the variance of the parameter λ  is given by: 
 

( ) ( ) ( )
2 2

2

1 1 1
[ ] [ ]I E Eλ λ

σ σ
λ λ λ

∗ ∗ ∗ ∗
= = = − =

′′ ′A A
 

 
Warning: 
 

     In practice, the M.L.M. is often used for  N  very  much less than  ∞.  No general rules exist 
to determine whether all of these results hold for finite  N,  e.g. how much Bias an estimator  S  
may have, how far from minimum variance  the solution will be, etc.  These details will depend 
on the particular ( ) ;f x λ   as well as  N.  Proceed with due caution in such situations! 
 


