Fall 2012 Analysis of Experimental Measurements B. Eisenstein/rev. S. Errede

Mini-Review of the Main Points from P598AEM Lecture 11:

Consider carrying out N “experiments” where for each experiment, we perform a single
measurement X, of a random variable X, and where we are trying to “determine” (i.e. estimate )

a single parameter A from the collection (ensemble) of the N measurements of X; .

Later, when we look at practical schemes, we will treat the case of several measurements per
experiment and also the (simultaneous) determination of several parameters.

After we have carried out N independent measurements of the random variable X: X, X,,..., Xy,
we construct a function S(X,,--+,X,) whose value is an estimator of the parameter of interest A .

The numerical value of the function S (“the estimator”) is itself a random variable.
(e.g. repeat the N “experiments” 10° times — the value of S for one repetition will be similar,
but not identical to those obtained for S in the other 99999 repetitions). Thus, S has a mean and
a width , along with higher moments of the S-distribution...

We define the bias B( ) associated with the estimator S of the parameter A as: B(1)=E[S]-
A “good estimator” will be unbiased, i.e. have B(4)=E[S]-1=0. Then: E[S]=

Let f (X ; /1) be the P.D.F. describing the measurement of the random variable X. A is the

parameter we wish to determine by a series of measurements X,,---,X,. The joint P.D.F. of this
series is f (X, %, Xy;4)=f (X34)- f(X,;54)-...- f(X;4) provided that the N individual

measurements of X, are independent.

N
Define:  L(X,%,,....%;4)=] ] f(%:4
i=l

N
Define: f(xl,xz,...,XN;l)Elnﬁ(xl,xz,...,xN;l):ZIn f(x:4)

Deﬁne: g!(xlszjn.’XN;/l)E d[(xlaxzd,.ﬂj-gXN;ﬂ’)Edd—lln,E( , {ZIHf I’ }
, d20(X, %,y X3 A)  d?
Define: / (Xsz,---,XN;/l)E ( 1 dzf N )Edlz lnﬁ(xl,xz,. wiA d/12 {Zlnf X,,/i}

We then showed (for unbiased estimators S) that a lower bound existed for the variance of S:

oo | 1 1 1

ST TR B 1(A)

I(A) is called the
d 2 d? Information
Where: E[¢" (ﬂ)]= E {—lnf(ﬂ)} =—E[€"(/1)]=—E{ ln£( )j|z (/1) <—| of the sample
da da’ associated with
the parameter A.
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More Information on Information:

The Information 1 (4)=E[¢* (4)] = EH%M(@)H —_E["(2)] :_E{dd; lnL(Z)}

depends (linearly) on N, the number of measurements carried out in the experiment.

We can show that 1 (1) depends on the P.D.F. f(x;A4), but does not depend on the particular

values of the individual X;’* measured in the experiment.

In P598AEM Lect. Notes 11 (p. 6), we defined the quantity: ¢(x;A4)=

N df (x;4)/dA

E’(xl,xz,...,xN;i):Z%In f (xi;i)=ifx(i;—i/%:i ff’((xi;/i)) Ei‘ﬂj(xpi)

i=l i=1

Then:

E[¢*(4)]=E

Since the N

=S e[ |+ LD ELo(x: )] E[4(x:2)] <] mitsuremens

independent.

d ) .
Next, we show that E [¢(Xi;ﬂ)] =0. Take aof: {1 =j f (X;l)dx} , which yields:

0=[f(x2)dx=] ff((:j)) f (x:4)de=E[¢(x:4)]
Thus:

N

E[0 (A =Z [ (%:4) } quﬁ X:2) £ (%:4)dx
= N[ (x:4) f (x;2)dx=NE[ # (xi;/i)]
Hence, the Information:

| (4)=E[¢” (A)]=—E[/"(2 NE{Z(ﬁ } [(i%}z}NEHi;—ilnf(xi;/”t)jz}

i=1 i=1

simply depends on the form of the P.D.F. of the measurements f (X ;/7,) , and also depends
linearly on the number of measurements, N.
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Finally, for unbiased estimators, the lower bound on the variance of S is:
1 1 1 1 1

0% >—= = = -
o> 1(2) EN?(A)]  EL(A)] NEP&@«;A)}

_ 1 _ 1
<)) sz

A minimum variance estimator is a choice of S for which the equality holds in the above
relation — i.e. (in the unbiased case):

O_ZZL: ! = ! =— ! = !
T H O S ]

1 1

el(g )] el

We recall (PS98AEM Lect. Notes 4) that the covariance inequality became an equality when
the variables were linearly related (specifically: cov(x,y)=+1 if y=ax+b).

The covariance here is: cov(S,¢'), so the equality will hold if: ¢'(A1)=rS+t, where r and t
are “constants”, i.e. they do not depend on X, X,,..., X, , (but they can/may depend on 1).

Recall that (by definition), S cannot be a function of 4, i.e. S # fen(4).
Also, recall that E[('(1)]=0. Thus: E[¢'(1)=rS+t] = 0=rE[S]+t, or: t=—rE[S].
Using this, we can rewrite: ('(1)=rS +t = r(S -E [S])

Thus, if we have an unbiased estimator S, for which ¢'(1)=r(4)-{S(4)-E[S]} then the variance
of the unbiased estimator S is a minimum.

The condition ¢’ =r(1)-{S — E[S]} can be shown to be necessary and sufficient for the variance of
the unbiased estimator S to be a minimum.

Let us assume that we have found such an unbiased estimator S, satisfying:

(2)=r(2)-{S—E[S]}

Then: 12 (A)=r*(A)-{S-E[S})’
And: E[¢7 (A)]=r’(A)E[{S-E[S]} |=r’(4)os =1(4)

E(Té
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Since this is a minimum variance unbiased estimator, then: o =ﬁ
Hence: o =—— = or: og= or: ol =——
() (e T () T r(2)

Thus, once we find ¢'(1)=r(2){S—E[S]}, we can immediately determine o3 =1/r(1).

Let us return now to the “weighted mean” example that we worked on in PS98AEM Lecture 11,
where we had N independent measurements X, X,,..., X, of the random variable X described by

the Gaussian P.D.F. f(x;a)=\/%a ~(-af/2e" 41 d which led to:
N . 2
E(a)zlnﬁ(a)=—lzu + constant
245 lof
di(a) dinL(a) N X —o
YA = = = !
(«) da da +§‘ o’

and the estimator S (for the value of « which maximizes the above / (a) ), which (here in this
case) is the weighted mean:

S :% (n.b. previously, we called this o *)
27
5 X LE[X] & R 51
2| 2 X Xy
Then: E[S]=E| 55— |=F——=t—"L=%| - |=%=a
1 1 Z 1 z 1
;Gz ;0-'2 i=1 0-2 i=1 0-2

Rewrite: f'(a)=ZN:Xi 2“=ZN:%—ZN:%={ZN:%} zl%—a ={ZN:L;}{S—“}

This is of the form: ¢'(a)=r(a){S-E[S]} = {ZN:%}{S -a}

i=1 Oj
. 1 1 N1
Since: E[S]=a, and (here): === r(a):Z;? (;t fcn(a))
S a 1= i

So we have shown that S is an unbiased, minimum variance estimator of the parameter « .
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The variance of the estimator S: o; =0 = L =— : or: Lz = LZ = ziz
ZL Os O, =10
i=1 Oj
In the case of o = ¢~ (i.e. “equal errors”) then: Lz = Lz = ﬁz, and: oy=0,= 2 W
o, o0, O “ JIN

Actually, we could have arrived at the same result for 1/ o simply by doing error propagation
(assuming small uncertainties). But we now know that the estimator S for finding & when the

. . 1 _(x-a 2/20-2 . .
P.D.F.is a Gaussian, f(X;a)=——¢ (x-a) is the best there is!
N2 o T

This estimator S is unbiased, has minimum variance and leads to an estimate of « that is
closer to the “true” value than any other estimate!

For many calculations, it is useful to re-express the Information:

I (4)=E[£*(2)]=-E[" ]—NE{Zfiﬁ XM} [(i%ﬂ_NE{&;_AI“(XM)H

i=1

Consider: /(A1)= ZN:ln f(x;4) and: ('(1)= iiln f(x;4)= i

, A S i Y
e ()= 3 S R

We can show that the first term on the RHS is zero:

Start with: I:J' f(x;4)dx
d ,

Take —: O:If dx
dA

Takeanotheri: O:J.f"dX:J. f— fdx=E f—
dA f f

1 (2)=E[¢*(2)]=—E[("(2)]
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For example, for N independent measurements of a Gaussian-distributed random variable x,
we saw that the log likelihood was:

N N2
K(a):—lzu + constant

295 o

i=1 O-i
N
Thus: | (a)=E[(” (a)]=—E[£”(a)]=ZL2
i=1 O-i
And: o, =——= as we have already seen.

It is interesting to note, from the above, that for Gaussian-distributed measurements of a
N

. . 1
random variable x, the Information 1 (o)=Y —,
i=1 Oj

expectation value, and depends only on the individual o ‘s.

is constant, independent of the X’s or their

Let us now look at measurements described by the Poisson Distribution:

n

Vv e .
P (n ;V) = me*" = probability of observing n events when Vv are expected.

We have already seen that: E[n]=v and: o’ =V.

Suppose that we are studying some phenomenon which we believe is Poisson distributed.
Let us consider, for example, an “experiment” in which we count for one minute, and that
X = n, the number of counts recorded. We repeat the experiment N times, and then calculate
the likelihood:

((v)=InL(v)=Y {-v+xInv-In(x")}

i=l

de(v) dln£

= :Z{ }
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: . o de(v)
We solve for the value of v=v , at which E'(V ) = d =0:
v
d/(v N N X
0=10'(v) *:L :Z{—HX}: :—N+—Nx_N(é—lj
v=v dv | . & v - Vv
N
which yields the estimator: S=v" = ﬁz X. = X , the sample mean — i.e. simple/arithmetic mean.
i=1

*

Note that this S is an unbiased estimator, since: E[S]=X=V

We also have:

(v ZN:{ } %ZN:{xi—v}:%{izli:xi—Nv}:%{NY—NV}:E{Y—V}:N{z—l

i i=1 \' Y
N
But from above: S=Vv :ﬁz X, = X , the sample mean, and: E[S]=V
i=1
N N (. N
Thus: V'(v)=—{X-vl=—1v —v;=—1{S—E[S
us (v) ’ {X-v} y {v v} . { [ST}

This is of the form: ¢'(v)= r(v){S -E [S]} ,
and is the necessary and sufficient condition such that this S is a minimum variance estimator!

. , . v
Furthermore, we see from comparing the above / (V) relations, that: UVZ* = ( *) = N
ryv

Now let us return to the Maximum Likelihood Method (M.L.M.)

We will show that this completely general method is unbiased and also gives minimum variance
for the case of N > oo.

The M.L.M. takes £(X,,X,,...,Xy;4)=InL(X,X,,...,Xy;4) and evaluates it for measured

random variables X, X,,..., X .

Then 6’(/1):;—/16(/1):;—/11n£(/1) is set to zero.

Let us assume that the solution for K'(/”t) =0 has only a single root, at: A =A4".

Then the estimator S is just A°. Note that this defines the estimator S implicitly, rather than
as an explicit function S(X,X,,...,Xy ).

In some cases (as in the previous examples, above), S turns out to be an explicit function
S(X,,%,,..., Xy ), but this will not be true in general.
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In order to handle this, we expand /¢ ’(/1) in a Taylor series about A =A1":

0(2)= D) (A=A ) 0 (2 )= (A=) (A7) 4. sinee £(27) =0,

a=a"

N
If N is large enough, we can replace the sample mean ﬁZQi by the expectation value E[Q].

i=1
. for large N: —W(ﬂ*) = E ZN:i t'(x:4)
- loriare N Sda | f(xsa)]|

Since the set of N measurements all originate from the same P.D.F., the expectation value on
the RHS is the same for all i :
z_l’l

. Nod | f(x34)
"(A NE| » —3———2
(#) = {Zdﬂ{f(xi;ﬂ)}
Thus, for N large enough, we can expand ¢'( 1) in a Taylor series about A =A4":

N d2 f
=NE 1 A
. Zd/lZ n (Xl’ )

i=1

i=1

In fact, the expression on the right is just: E [f"(/l)h:f 1=E[/"(A)]=-1(1")

C(A)=(A=A") (A )+ = —1(AT)(A=A")+
We assume that higher orders can be neglected (for small ‘/'t — /1*‘) and so:

%f(ﬂ):[(ﬂ) = —1(2")(4-4") (nb. 1(2") is just a number.)

Solving this 1¥-order linear differential equation for ¢ (l) :

((A)=—% (/1*)(2—/1* )2 +constant =In £ (1)

And thus: £(2)=ce™) SN _ et T it o2 = | (lf) .
So for large N, we see that the likelihood function £(4) is Gaussian near A= A" (the mean),
and has a variance var(1)=o0; = l/l (/1*) .

We are gstimating A, so we choose the estimator S =A4".

Since A" =4, we see that S is an unbiased estimator of A.
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Since #/(4)=—-1(2")(A-4")=1(2"){S—E[S]}, which is of the general form:

g'(’l):r(ﬂ){S—E[S]}, hence: aﬁ=L= !

r(4) 1(47)

Thus, we also see that S=A4" is a minimum variance estimator of 4.

Summary:

In the limit N — oo, the Maximum Likelihood Method (M.L.M.) gives an estimate of the
parameter A which is unbiased and of minimum variance. The likelihood function £(1) is

Gaussian. The mean of the parameter 1 is A", the variance of the parameter A is given by:

o,=0.. = L1 !

ST RN e ()

Warning:

In practice, the M.L.M. is often used for N very much less than o. No general rules exist
to determine whether all of these results hold for finite N, e.g. how much Bias an estimator S
may have, how far from minimum variance the solution will be, etc. These details will depend

on the particular f (x;4) aswell as N. Proceed with due caution in such situations!
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