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General Least Squares with General Constraints:   
 

      Suppose we have  P  measurements  ( ) ( ) ( ) ( )( )1 1 2 2, , , P Py x y x y x y x≡ …  with a symmetric 

P P× covariance matrix of the ( )y x  measurements  ( ) y xV .  Suppose the theory prediction 

( ) ( ) ( ) ( )( )1 1 2 2; ; , ; , , ;P Py x y x y x y xλ λ λ λ≡ …  involves  M  (< P) parameters ( )1 2, , , Mλ λ λ λ≡ …   
in some general (i.e. not necessarily linear) manner.  Additionally, suppose there are K  functions 
( ) ( ) ( ) ( )( )1 2, , , Kf f f fλ λ λ λ≡ …  that relate (i.e. constrain) the  M  λ -parameters in some general 

(but not necessarily linear manner) via use of Lagrange Multipliers ( )1 2, , , Kα α α α≡ … .  
 

The ( )2 ;χ λ α  is defined as: 
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where  ( )
1

 y xV −  is the P P×  symmetric inverse of the covariance matrix of the ( )y x  

measurements, and the 1K ×  column vector ( )f λ  contains the  K  constraint equations.   

{n.b. In the linear constraint case ( )f B bλ λ= − . However, in general the constraint equations 

( )f λ  may be non-linear functions of the  M  λ -parameters.}.  
 

     We minimize the ( )2 ;χ λ α  by taking derivatives w.r.t. ( );λ α . We (again) use the iteration 
technique here too.  Suppose that after  ν  iterations,  we have obtained a set of approximate 
values of the  M  λ -parameters  and  K  Lagrange Multipliers α : 
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     We then expand (i.e. linearize) ( )2 ;χ λ α  in a Taylor series around these points ( );ν νλ α , 

then solve for ( )1 2, , , M
ν ν ν νλ λ λ λΔ ≡ Δ Δ Δ… , ( )1 2, , , K

ν ν ν να α α αΔ ≡ Δ Δ Δ…  and iterate further – 
similar to the discussion in P598AEM Lect. Notes 20  (p. 5-9). For additional details, see e.g. 
individual program write-ups or e.g. advanced texts on this subject... 
 

     Let us assume that we have determined the “best” values ( )* *;λ α  of these parameters using 
the Lagrange Multiplier constrained LSQ fit method.  
 

     We can obtain a better estimate, if we wish, of the measured random variables ( )y x .   
This procedure goes by the name “Adjustment of Observations”: 
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We define a 1P×  column vector  
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  of  measured values of the P  random variables  

(n.b. these may not necessarily be independent), with corresponding P P×  symmetric 
covariance matrix   mV  of the measurements m . 
 
     We want to know the “true” values (i.e. expectation values) of the measurements: 
 

( )1 2ˆ ˆ ˆ ˆ[ ] , , , PE m m m m m= ≡ … . 
 
     We will estimate them using a LSQ fitting method, and call the estimates the “fitted values of 
the measurements”.  We obtain the “fitted values of the measurements” by  adjusting  the 
measurements so that: 
 

•  Each measurement im  is allowed to move by an amount determined from the size of the    
    uncertainty on the measurement, 

imσ . 
•  The resulting fitted values of the measurements satisfy one or more constraints. 
 

We define a 1P×  column vector:  
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  of fitted values of  m , i.e. the estimates of  m̂ . 

 
Let there be  K  constraints which can be expressed in the form: 
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  or, defining a 1K ×  column vector:  ( )
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n.b. In general, these will be non-linear equations. 
 

Remembering the iterative 2χ  minimization method(s), we choose to work with  
linearized “corrections”:  
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#
   or, defining a 1P×  column vector:   c f m≡ −  

 

In terms of  2χ  minimization, since the m ’s are just constants, minimizing 2χ  with respect to 
c f m≡ −  is equivalent to minimizing 2χ  with respect to f .  
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     What should we actually minimize? If we use ( ) ( ) ( )2 1 1 2
  

T T
m mf m V f m c V c cχ χ− −≡ − − = = , 

the solution is (obviously) f m= ,  i.e. the “best” estimate of  ˆ im  is im  itself.  In order to do 
better, we must add in some new information − in this case, the requirement that the constraints 
be satisfied by the f ’s.  Thus, we instead minimize: 
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 is a 1K ×  column vector of Lagrange Multipliers. 

 

Taking derivatives of ( )2 ;cχ α , we obtain: 
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∂
  ⇒  ( ) 0T f =^    (i.e. the constraints will be satisfied) 
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Note that 
( )T f
f

∂

∂

^
 is a P K×  matrix ( )( )B f≡  with  jkth  element: 

( )k
jk
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f
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where 1,2, ,j P= …  ranges over the fitted variables and 1,2, ,k K= … ranges over the 
constraints. 
 

     Thus, the equations that we need to solve in order to accomplish this ( )2 ;cχ α  minimization are: 
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     For the general non-linear case, we must resort to approximation methods.  We Taylor series 
expand (i.e. linearize) the constraint equations around 0f , an initial estimate of the fitted 
values of the measurements f . Then we require that: 
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     As usual, we assume that 0f f−  is small enough so that we can safely neglect/ignore the 

terms in the Taylor series expansion involving higher powers of  ( )0f f−   .and.  the higher-

order derivatives of  ( )f^ .  (This step is known as “linearizing the constraints”.)   
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Then:  

( ) ( ) ( ) ( ) ( )0

0
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A neat trick exists for solving this conveniently.  We write: 
 

( ) ( ) ( ) ( )0 0 0f f f m f m c c− ≡ − − − ≡ −  
 

where:  c f m≡ −   and: ( )0 0c f m≡ −  
 

Then:                   ( ) ( ) ( ) ( ) ( )0
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We rewrite this as: ( )00 TB c c= + −^  where it is implicitly understood that the derivatives and 

the constraints are evaluated at the an initial estimate  0f f= .  Then:  0T TB c B c r= − ≡^ . 
 

The other equation we must solve is:  1
 0mV c Bα− + = , which, multiplying on the LHS by mV  

yields:  mc V Bα= − . 
 

Thus:  ( ) 
T T

mr B c B V B Hα α= = − ≡ −   where: N NN N 
T

m
K K K P P KP P

H B V B
× × ××

≡  

 

By construction,  
T

mH B V B≡  is a K K×  square, symmetric (and real) matrix, and therefore,  

it has a K K×  square, symmetric (and real) inverse ( ) 11
 

T
mH B V B

−− ≡ . 
 

Thus, multiplying  ( ) 
T T

mr B c B V B Hα α= = − ≡ −  on the LHS by ( ) 11
 

T
mH B V B

−− ≡  gives the 

Lagrange Multipliers: 1H rα −= −  and 1
  m mc V B V BH rα −= − = +  gives the “correction”. 

 

Finally, the result of this step is:  f m c= + . 
 

We explicitly need to check/verify whether or not this new f  satisfies the constraints: ( ) 0f =^ . 
 

If it does, then we‘re done.  If not, then we use this f  as a new 0f  and repeat (i.e. iterate)  

the above procedure until  ( ) 0f =^   is satisfied. If  ( ) 0f =^  is satisfied, then ( ) 0T f =^  also. 
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Now let us calculate ( )2 ;cχ α  from the quantities that we have obtained.  

If ( ) 0T f =^  is satisfied, recalling that mV and  
T

mH B V B≡  are symmetric matrices, then: 
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Thus, ( )2 ; Tc rχ α α= − . This is the value of 2χ after the step to f m c= + . 
 
Next, we determine the P P×  covariance matrix of the “fitted values” using error propagation:  
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Now it is just algebra... 
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 

 

 

Multiplying this out on the RHS and again using  
T

mH B V B≡  this simplifies to: 
 

( ) ( )1
    

T

f m m mV V V B H V B−= −  
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     As before, since  mV  is symmetric, it has positive diagonal elements.  Likewise, the symmetric 

matrix  
T

mH B V B≡  also has positive diagonal elements, and so does ( ) 11
 

T
mH B V B

−− ≡ . 

     Therefore, from ( ) ( ) ( )( ) ( )11
        

T TT
f m m m m m m mV V V B H V B V V B B V B V B

−−= − = − ,  we see that 

the diagonal elements of   fV  are smaller than the diagonal elements  of   mV .   
 
     Thus, the 1-standard deviation uncertainties associated the adjusted (i.e. fitted) measurements 
are less than the 1-standard deviation uncertainties on the original measurements. 
 
“Pull” Quantities:    
 
“Pull” quantities are distributions of normalized/fractional differences between the fitted – 
measured quantities. which can be very helpful in verifying the validity of the LSQ fitting 
procedure.   

We define the ith  “pull” quantity as the normalized correction:  
( )2 2

i i i
i

i i i

c f mp
c f m

−
≡ =

−
    

where the brackets  are synonymous with the expectation value,  i.e.: 
 

( ) ( )2 22 2[ ]      [ ]i i i i i ic E c f m E f m= ⇒ − = −  
 

     Note that if there is no bias, then: 0i i ic f m= − = .  If everything is “nice”  
– i.e. the  P  input measurements m  are Gaussian/normally-distributed  .and.  their 
uncertainties, as contained in the individual elements of the P P×  covariance matrix of the 
measurements   mV  have all been correctly / properly assigned  .and.  if the various 

approximations and assumptions are all valid, then the ip   should be distributed as ( )0,1N . 
 

     By explicitly looking at the distributions (e.g. histograms) of the ip  for many independent 
measurements of each of the im , we can turn this around and check the “ingredients” listed above, 
especially whether the uncertainties on the individual have indeed been correctly assigned or not, 
by seeing whether the “pull” distribution ip  for each im  is indeed distributed as ( )0,1N  or not.  
 
     Let us suppose that we have performed the Adjustment of Observations, starting with our 
initial measurements  m  and arriving at final adjusted/fitted values f .   
 

     It is not trivial to evaluate the 2
ic . The  1P×  column vector  correction  c f m≡ − .   

We also have the P P×  covariance matrix of the measurements mV  and that of the 
adjusted/fitted measurements   fV .    
 

Formally:                       ( ) ˆ ˆ ˆ ˆ[( )( )] ( )( )m i i j j i i j jij
V E m m m m m m m m= − − = − −  

and:                                ( ) 
ˆ ˆ ˆ ˆ  [( )( )]      ( )( )f i i j j i i j jij

V E f f f f f f f f= − − = − −  
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If the  P  measurements  m  are truly unbiased, then:  ˆˆ i im f= ,  i.e. [ ] [ ]i i i iE m m f E f= = = . 
 

Thus:                      ( ) ( )ˆ ˆi i i i i i ic f m f f m m≡ − = − − −  
 

For convenience, we define the 1P×  column vectors:   ( )ˆf f fδ ≡ −   and:   ( )ˆm m mδ ≡ − . 
 

Then:                        ( ) ( )ˆ ˆc f m f f m m f mδ δ≡ − = − − − = −     or:     m f cδ δ= −  

and: 

                               
( )( ) [  ]  

       2  

TT T
m

T TT

V E m m m m f c f c

f f c c c f

δ δ δ δ δ δ

δ δ δ

= = = − −

= + −
 

 

or:                             2  TT
m fV V c c c fδ= + −  

 

or:                              2  TT
c m fV c c V V c fδ≡ = − +  

 

This is what we need, since the diagonal elements of the P P×  covariance matrix  
T

cV c c≡  

are the 2
ic .  But we need to evaluate  Tc fδ  in order to finish the job… 

 

Let us evaluate   Tc fδ   for the case where  f D mδ δ= . 
 
Note that this is a  linear  relationship, with D  being a P P×  square matrix. 
 

Then:   f D mδ δ=    ⇒    ( ) ( )ˆ ˆf f D m m− = −  
 

Or:         ( ) ( ) ( )ˆˆ ˆ ˆ ˆf Dm Dm f Dm Dm m Dm D m= − − = − − = − −   
 

Now:     ( ) ( )ˆ ˆc f m f f m m f mδ δ≡ − = − − − = − . 
 

( )               T T T T T
fc f f m f f f m f V m fδ δ δ δ δ δ δ δ δ δ∴ = − = − = −       

 

But from  f D mδ δ=   we get:  ( )
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m
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f
δ
δ

∂
=
∂

,   and from: ( ) ˆf Dm D m= − −    we get: 
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m
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                  T T T TT T T
f f f f mc f V m f V m m D V m m D V V Dδ δ δ δ δ δ δ∴ = − = − = − = −  

 

Or:      ( )   
TT

f mc f V DVδ = − ,   since   
T

m mV V=  is a symmetric matrix. 
 

Thus:  ( )     
T
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f m f m

f
c f V DV V V

m
δ
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But we earlier derived: ( )1 1
  

T
m m
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T
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Thus for the linear case where  f D mδ δ= :         2  TT
c m f m fV c c V V c f V Vδ≡ = − + = −  
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−
   ⇒   
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i i
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m f
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     Naively, one might expect 2 2 2 2
i i i ii f m m fc σ σ σ−= = + , but this ignores/neglects the correlation 

between  im  and if . 
 

     Since  ( ) ( )1
    

T

f m m mV V V B H V B−= − , then 2 2
i im fσ σ>  and thus we won’t get into  trouble in 

calculating the ip  “pulls”. 
 
     Examples of  LSQ fit “pulls” are shown in the figures below for a “Toy” Monte Carlo 
program that carries out LSQ fits to branching ratios of neutral and charged charmed  D  mesons, 
from a paper by Werner M. Sun, “Simultaneous least-squares treatment of statistical and 
systematic uncertainties”, Nucl. Inst. Meth. Phys. Res. A 556 325-330 (2006). 


