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Function Minimization (Continued): 
 
     There also exist other, more powerful Gradient function minimization methods.   
 
     One elegant and powerful one is the Variable Metric Method (VMM): 
 
     This method utilizes concepts from differential geometry, where an  M-dimensional space is 
characterized by a metric  2 Tds dx Adx= . The components of the M M× metric tensor A  
transform in a covariant manner w.r.t. a change in coordinate systems, e.g. Cartesian/rectangular 
coordinates ( ), ,x y z  to spherical-polar coordinates ( ), ,r θ ϕ . {Please see Auxiliary P598AEM Lect. 
Notes on invariant/covariant/contravariant vectors/tensors if want/need further info on this…}. 
 

     In the VMM, we let the properties of the function ( )F λ  (to be minimized) define a metric 

tensor.  Assuming that ( )F λ  is a scalar  function,  the second derivatives ( )2

i j

F λ
λ λ

∂
∂ ∂

  

are the components of a covariant tensor, so we define the metric tensor as: ( ) ( )2

ij
i j

F
Hλ

λ
λ λ

∂
≡
∂ ∂

. 

Then 2 Tds dx H dxλ=  is an invariant quantity.   
(n.b. λ  behaves like a contravariant vector under coordinate transformations.) 
 

     If ( )F λ  is for example, the scalar ( )2χ λ  function, then 2ds  is the (square of the) “distance” 
dλ λ λ→ + ,  i.e. the (square of the) number of standard deviations difference between λ  and dλ λ+ . 

 

     As usual, we know that the covariance matrix for the λ -parameters will be 1
 V Hλ λ

−=   

(when at the minimum of ( )F λ ). The VMM uses the covariance matrix   V λ  during the function 
minimization process itself.  Since Hλ  behaves as a covariant tensor under coordinate 

transformations, then  V λ  ( 1Hλ
−= at the minimum of ( )F λ ) transforms as a contravariant tensor. 

     From  V λ  we can construct another invariant:   
Tg V gλ λ λρ ≡ ,  where ( )

 i
i

F
gλ

λ
λ

∂
≡

∂
  is the gradient 

of the function ( )F λ , and behaves like a covariant vector under coordinate transformations. 
 

     It turns out that  
Tg V gλ λ λρ ≡   is twice the difference between ( )F λ  (evaluated at the same λ  

where  V λ  and  gλ   were calculated) and the minimum of the quadratic form whose coefficient 

matrix is 1
 H Vλ λ
−= . 

 

     Thus, 1
2 ρ   is the expected (“vertical”) distance ( = difference in ( )F λ  values) to the 

minimum if the function ( )F λ  were truly quadratic.   If we have approximations to the 

covariance matrix  V λ  and gradient gλ , then we can quickly calculate  1 1
 2 2

Tg V gλ λ λρ ≡   
and see if we have converged. 
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     If ( )F λ  were truly quadratic,  then Hλ   would be a constant (i.e. independent of λ )  and we 

would be in a space with a  “constant metric”.  If ( )F λ  is not (terribly far from) quadratic, then we 
expect that Hλ  will be a slowly varying function of λ ,  in which case we have a variable metric. 
 

     In Newton’s Method, Hλ  is recalculated at each step, typically a very time-consuming 

process.  In the VMM,  the covariance matrix 1
 V Hλ λ

−=  is estimated in each step by taking the 

 V λ  at the previous step and correcting it by applying information from the current step.   
 
     The “Matrix Updating Formula” (MUF) which does this job is different for different VMM’s. 
The MUF procedure is as follows: 
 

a.) Pick starting values 0λ .  Calculate the corresponding starting gradient  ( ) 0
0g Fλ λ λ

λ λ
=

≡ ∂ ∂   

     and some approximation  to the covariance matrix 0V λ .  

     (n.b. 0
 V λ  may be the full second derivative matrix, or simply the unit matrix  .)   

 

b.) Take a step to:     1 0 0 0
   V gλ λλ λ= − . 

     {Compare this to: 0 1H gλ λλ λ −= −  in Newton’s Method, P598AEM Lect. Notes 23,  p. 6}. 

      This would be the exact  minimum if ( )F λ  were quadratic  .and.  if  0
 V λ  were the true     

       covariance matrix (and not an approximation).  {n.b.  In a more elaborate method, we might  
       look for a minimum along the “line” from 0λ  to  1λ and call that  point “ 1λ ”.} 
 

       Using 1λ  we calculate the new gradient  ( ) 1
1g Fλ λ λ

λ λ
=

≡ ∂ ∂ .   
 

c.)  Now we:  • correct the covariance matrix  V λ  using an updating formula: 
 

( )1 0 0 0 0 1 1
   , , , ,V V f V g gλ λ λ λ λλ λ= +  

 

            • replace          0gλ  by  1gλ ,    0V λ  by 1V λ ,   0λ by 1λ    
 
and then repeat steps b.)  and  c.) until the process converges, within some specified tolerance. 
 

One such function ( )0 0 0 1 1
 , , , ,f V g gλ λ λλ λ ,  due to Davidon (Comput. J. 10, 406 (1968))  is: 

 

( )( )
( )

0 0
  1 0

  0
 

T

T

V V
V V

V
λ λ

λ λ
λ

δ γ δ γ

γ δ γ

− −
= +

−
   where: 1 0δ λ λ≡ −   and:  1 0g gλ λγ ≡ −  

 

This version of  f  has some very nice properties, including the fact that if ( )F λ  is truly quadratic, 
then the approximate  V λ  can be shown to → the true covariance matrix after a number of iterations. 
 
 
 



Fall 2012                                      Analysis of Experimental Measurements                       B. Eisenstein/rev. S. Errede 

P598AEM Lecture Notes 24  3 

     The VMM technique works well and is much faster than Newton’s Method, since it does not have 
to recalculate  V λ  from scratch at each step.  However, sooner or later computational round-off errors 
will accumulate, as will errors due to approximations .  It then makes sense, at the end, to recalculate 

 V λ  from scratch in order to obtain computationally reliable error estimates on the λ -parameters, 
rather than use the approximation to the covariance matrix that has been building up all along. 
 
Convergence can be tested after each step by looking at: 
 

            1 1
 r V gλ λ=   (which is the distance the λ -parameters will move in the next step,  i.e.  * 1λ λ− ) 

or at: 1 1
 2 2

Tg V gλ λ λρ ≡ ,    or at:   ( )1F λ  itself. 
 

We expect ( ) ( )1 0F Fλ λ<  of course. At the minimum 0r = , since the gradient 

“ ( ) 0g Fλ λ λ≡ ∂ ∂ = ” defines the minimum. (In “real” problems, gλ  is never exactly = 0!)   

Finally,  1 1
 2 2 0Tg V gλ λ λρ ≡ =  at a minimum.  The value of  1

2 ρ   is usually used as the criterion for 

convergence, since it estimates how far ( )F λ  is from its value at  the minimum;  when 1
2 ρ  is 

smaller than a preset limit, the process is stopped. (In “real” problems, 1
2 ρ  is never exactly = 0!)   

 
Function Minimization with Constraints: 
 
     Until now, we have only discussed cases where no constraints are placed on the λ -parameters  
(e.g. no restrictions on their allowed ranges). Constraints on the λ -parameters can take many forms: 
 

i.)   
( )
( )

1

2

0
0

f
f

λ
λ

= ⎫
⎪= ⎬
⎪
⎭

   Constraint Equations 

 

ii.)  
1 1 1

2 2 2

a b
a b

λ
λ

≤ ≤ ⎫
⎪≤ ≤ ⎬
⎪
⎭

   Simple Constant Limits 

 

iii.)  
( ) ( )
( ) ( )

1 1 1

2 2 2

r s
r s

λ λ λ
λ λ λ

≤ ≤ ⎫
⎪≤ ≤ ⎬
⎪
⎭

  Simple Variable Limits 

 

iv.)  
( ) ( ) ( )
( ) ( ) ( )

1 1 1

2 1 2

u v w
u v w

λ λ λ
λ λ λ

≤ ≤ ⎫
⎪≤ ≤ ⎬
⎪
⎭

 Implicit Variable Limits 

 

     We shall consider techniques that modify ( )F λ  in such a way that the ordinary 

unconstrained 2χ minimization methods will be applicable. 
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For i.)  Constraint Equations, we have already seen how “Lagrange Multipliers” α  can be 
introduced.  Alternatively, we have also shown that if we can solve each equation for one of the  
λ -parameters explicitly, e.g. kλ , then we can eliminate that specific λ -parameter. 
 
For ii.) Constant Limits, a useful technique here is to change variables.   The idea is to replace the 
M  λ -parameters by  M  η -parameters, where the η -parameters are functions of the λ -parameters,  

i.e.  ( )η η λ=  with the property that when kλ  takes on values from ka  to  kb , then kη  takes on values 

from  −∞  to   +∞ .  The function ( )η λ  should not introduce any new minima in 2χ  and should also  
be “smooth” so that it does not severely distort or add any weird features to the existing problem. 
 

     Of course, once the problem has been solved in η  space, the covariance matrix  ( ) Vη λ  of the  

η -parameters (as well as the η -parameters themselves) must be transformed back to λ  space.   
 

Examples: 
 

  To limit 0 kλ≤ ≤ ∞ ,  e.g. choose: 2
k kλ η=         or:  k

k eηλ =  

  To limit 0 1kλ≤ ≤ ,    e.g. choose: 2sink kλ η=  or:  
k

k kk
e

e e

η

η ηλ −=
−

 

  To limit k k ka bλ≤ ≤  e.g. choose: 2sink k k ka bλ η= + ,  etc. 
 

     Note that the π -periodicity of the 2sin kη  function implies that a particular value of  *
kλ  

corresponds to many *
kη , each differing by π  from each other.  This means that while searching in  

kη  space to minimize 2χ , the kη -steps should be small enough so that the search doesn’t ever 
jump from the neighborhood of kη to kη π± , or else the procedure will become very confused... 
 
     This procedure can be extended in many ways to more complex constraints.  For example, to 
minimize ( )1 2,fcn λ λ  with the requirement that  1 20 λ λ≤ ≤ ≤ ∞  we could define 2

1 1λ η= , 
2 2

2 1 2λ η η= + . This enforces the above requirement. 
 
For iii.) Simple Limits and iv.) Variable Limits,  a useful technique employs a “Penalty 
Function”.   Instead of transforming the variables in ( )F λ  as we did above, we modify ( )F λ  
itself in such a way that it is forced to become very large where we don‘t want λ  to go, but is 
unaffected for values of λ  that are allowed. 
 

For example, in order to minimize ( )fcn λ  with the additional constraint ( ) 0p λ ≥ , we can 

define a “penalty function” ( )T λ  as: 

( )
( )

( ) ( )2

0              if  0

[ ]   if  0

p
T

c p p

λ
λ

λ λ

≥⎧⎪= ⎨
<⎪⎩

 

 

where  c  is some “large” positive number, i.e. large compared to any value of ( )F λ  in the 

region being searched near the minimum of ( )F λ . 
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We then minimize the function ( ) ( ) ( )F F Tλ λ λ′ ≡ + ,  i.e. we minimize: 
 

( )
( ) ( )
( ) ( ) ( )2

                   if  0

[ ]   if  0

F p
F

F c p p

λ λ
λ

λ λ λ

≥⎧⎪′ = ⎨
+ <⎪⎩

 

 

Thus, ( )F λ′  will be continuous at the “boundary” of the constraint,  i.e. where ( ) 0p λ = .  
 

And, as soon as λ  “wanders” into a region where ( ) 0p λ < ,  ( )F λ′  gets large, and so λ  will 
wander right back out! 
 
Finding Multiple Minima and the Global Minimum: 
 
     Although the physical problem that motivates finding a minimum is assumed to have “a 
minimum point”, i.e. a “best” solution, the function we use to solve the problem may in fact have 
several (local) minima.  Ideally, a “solution” should find all of the minima, leaving us free to 
think about the results and choose the one that is the “best” answer to our problem.  Any of the 
techniques that we have discussed so far will (at best) find only one minimum, which may or 
may not be the Global minimum, and may not even be the one closest to our starting point. 
 
 
 
 
 
 
 
 
 
 
 
 
 
     For physical problems we often assume that the minimum we want is the one nearest the starting 
values of some (or all) of the parameters (i.e. we have foreknowledge of, or approximate values for  
one or more of them.)   It is not even common practice to demand that the minimum we want be the 
Global minimum.  It is rare to ask for, and virtually impossible to find, all of the minima of a 
complicated function of many parameters if only a limited amount of computer time is available.  
Unfortunately, no methods in common use today are guaranteed to work for finding several minima.   
 

     In principle, a “grid search” could be made in which a grid of starting values  0λ  was used.  
For each starting value, a complete minimization could be done.  If the grid were fine enough, then 
we’d probably find all of the minima of ( )F λ  in the region searched. But the “cost” would be high! 

     One practical possibility is to do a Monte Carlo search once *λ  has been found.  We look at 

( )F λ  at many other points and see whether ( ) ( )*F Fλ λ<  anywhere, which would prove that 
*λ was not the Global minimum.  A new minimization could then begin at that λ .  This will 

eventually find deeper and deeper minima (if any), but will not find any shallower ones, if these 
exist/are present. 

• • 

Start 

1 2 For example, if we start at  “1” we will probably 
find the left hand shallow minimum, and if we 
start at  “2” we will probably find the deeper 
right hand one.  But the first step may cross over 
to find the other minimum! 
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     Some analytic tools have been developed for finding other minima.  For example, since the 
first derivatives  ( ) *F

λ λ
λ λ

=
∂ ∂  vanish at the minimum of the function ( )F λ , at  *λ λ= ,   

then near the minimum, the Taylor series expansion is: 
 

( ) ( ) ( ) ( )* * *1    higher-order terms
2

T
F F Hλλ λ λ λ λ λ= + − − +  

 

     Now if other minima are present in ( )F λ , the higher order terms in the Taylor series 
expansion will be important, since information about the other minima must be contained in 
these higher-order terms.   
 

     The trick, then is to transform ( )F λ  such that it has no minimum at *λ λ= , but it still 
retains the information contained in the higher-order terms – e.g.  define: 
 

( )
( ) ( )

( ) ( )

*
*

1 * *

2
, T

F F
F

Hλ

λ λ
λ λ

λ λ λ λ

⎡ ⎤−⎣ ⎦≡
− −

 

 

Near *λ ,  ( )*
1 , 1    higher-order termsF λ λ + ,  so it (presumably) has no minimum at *λ λ= .    

Then we can look for a minimum/look for minima associated with ( )*
1 ,F λ λ ....    

 
     Methods such as this have been found to work in some cases, but their general validity has 
not yet been established… 
 
The Metropolis-Hastings Algorithm and Simulated Annealing: 
 
     The Metropolis-Hastings algorithm [N. Metropolis, et al., J. Chem. Phys. 21 (6): 1087-92 
(1953); W.K. Hastings, Biometrika 57 (1): 97-109 (1970] is a Markov chain (i.e. random-walk) 
Monte Carlo algorithm used for obtaining a sequence of random samples from a function ( )F λ  
for which direct sampling may be difficult. It was first proposed for use with the Boltzmann 
distribution ( ) ( ); BE T k Tf E T e−∝ . The M-H random walk-type algorithm can be helpful, when 
used in combination with a function minimization algorithm, such as the Simplex Method,  
to efficiently do so, and hopefully find the Global minimum of ( )F λ .  
 

     The sequence of random samples of ( )F λ  can also be used e.g. to approximate the function 

( )F λ  or to compute an integral of the function ( )F λ  − i.e. a C.D.F., or an expectation value, … 
 
     The M-H algorithm has been used to solve the famous Traveling Salesman Problem – 
minimizing the total round-trip path for visiting a sequence of cities only once {there are even 
websites where you yourself can solve your own trip, e.g. http://www.gebweb.net/optimap/}.  
The M-H algorithm has also been used for VLSI chip design, PC board layout – routing traces to 
minimize their length, using e.g. Lagrange multipliers in order to minimize the # PC board 
jumpers, etc. The M-H algorithm has also found use(s) in calculating many-body spin 
configurations, DNA & genome sequencing... 
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     The strategy employed by coupling the Metropolis-Hastings algorithm e.g. to the Simplex 
function minimization method is inspired by the microscopic thermodynamical physics associated 
with the slow (i.e. adiabatic) cooling of a heated metal – i.e. the annealing of the metal. 
 
     At high temperatures, the number of local microstates available to be “explored” by an atom 
of the metal is large – due to the high local energy density – which is proportional to the 
temperature T of the metal. The atoms of the metal would all like to be in their lowest possible 
energy states (thereby maximizing the overall entropy of the system) but sometimes, due to 
temporal and spatial fluctuations in the (local) thermal energy density, individual atoms may 
(momentarily) find themselves in a higher energy state.  
 
     As the metal slowly cools, the number of local microstates available to be “explored” by an atom 
slowly decreases due to the decrease in thermal energy; the thermal fluctuations are also reduced.  
 
     For an adiabatically slow cooling process, the atoms in the metal eventually find their lowest 
energy state, forming a giant single crystal if no defects are present, at the end of the cooling process. 
 

     At  0T = , the “internal energy” E associated with the (scalar) function ( )F λ  to be minimized is 

the value of the function itself, i.e. ( ) ( )0E T F λ= = , at the {M-dimensional} “space” point λ .  
 
     The simulated annealing procedure of the Metropolis-Hastings + Simplex method starts off at a 
“high” temperature maxT {which hopefully is ( )max max B max BT E k F kλ> = }. Thus, at finite 
temperature T, the “metal” {the ensemble of {continuum} values of the {spatial} λ -parameters 
associated with the (scalar) function ( )F λ } must have an average thermal energy density ( )thu TΔ  

and also have thermal fluctuations in the local energy density ( ),thu Tδ λ  associated with it.  
 
     Recall that the simplex function minimization replaces the M-dimensional “space” point λ   
by an 1M +  dimensional simplex – e.g. a triangle in 2-D or a tetrahedron in 3-D, etc. 
 
     We thus add a positive, logarithmically-distributed random variable, proportional to the 
temperature T, to the stored function value ( )F λ  associated with every vertex of the simplex: 
 

( ) ( ) ( ) ( ), th thE T F U T U Tλ λ δ≡ + Δ +  
 

     Note that since the thermal contribution ( ) ( ) ( ) ( )th th th thU T U T Vol u T u Tδ δΔ + = × Δ +⎡ ⎤⎣ ⎦  to 
the internal energy is logarithmically-distributed, then the corresponding changes in the (local) 
Maxwell-Boltzmann probability density function ( ) ( ); BE T k Tf E T e−∝  will be linear. 
 
     In analogy to the annealing process of a real metal, if the simulated thermodynamical system 
is offered a succession of options, we assume that it will (on average) change its configuration 
from energy ( )1 1,E E T λ≡  to ( )2 2,E E T λ≡  with probability ( )2 1 BB E E k TE k Tp e e− −−Δ= = . 
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     However, note that if 2 1E E< , then ( )2 1 1BE E k Tp e− −= > . In order to prevent the overall 
function minimization process of this algorithm from being “too greedy” – i.e. finding the 
minimum of the function ( )F λ  too rapidly – thus “quenching” the metal instead of  
“annealing” it {and thus increasing the probability of the algorithm getting “trapped” in a local 
minimum}, the M-H algorithm prevents ( )2 1 BE E k Tp e− −=  from exceeding 1 by clamping 1p = . 
This information is then passed to the simplex, informing it that going from ( )1 1E E λ≡  at 1λ  to 

( )2 2E E λ≡  at 2λ  is a good choice, but not (way) too good of a choice... The simplex will thus 
always accept this 1p =  move. 
 
     The 1M +  dimensional simplex then does its work moving around in the  M-dimensional 
space of the λ -parameters, reflecting, expanding and/or contracting as it evaluates the function 
( )F λ  at the current 1M +  vertex points of the simplex.  

 
     However, for every new λ -point that the simplex tries, the M-H algorithm subtracts a 
logarithmically-distributed random variable ( )thE Tδ , proportional to the temperature T, from 

the stored energy value ( ),E T λ  associated with that new λ vertex-point of the simplex.  
 

     Since 1p =  for 2 1E E< , then 1p <  for 2 1E E> , which will sometimes encourage the simplex 
to investigate/probe the λ -parameter space where fluctuations in the local thermal energy 
density have somewhat disfavored it. 
 

     Thus, because of the subtraction of thermal energy ( )thU Tδ  to each new point of the 
simplex, in order to encourage the simplex to continue with its function-minimization mission, 
the temperature T must be (slowly/adiabatically) reduced after a period of allowing the simplex 
to do its minimum-finding thing for a while – this temperature reduction is known as the 
annealing, or cooling schedule for this algorithm. 
 
     Note that the “size” of the simplex in λ -parameter space is proportional to the temperature T.   
At “high” temperatures, the simplex expands to a “big” scale, able to “freely” sample/range over 
much of the λ -parameter space. It then executes a stochastic, tumbling-type of Brownian motion 
within that region, sampling new, approximately random points as it does so. The efficiency with 
which a region of theλ -parameter space is explored is independent of its narrowness and its 
orientation. If the temperature  T  is reduced sufficiently slowly (i.e. allowing the “metal” to 
anneal), the size of the simplex also “shrinks” commensurately, enabling it to fit into/sample 
various local minima and thus also give it a good chance of finding the Global minimum of the 
function ( )F λ . 
 
     As one might anticipate, some non-trivial optimization of parameter(s) is required for the M-H 
+ simplex algorithms in order to successfully find the Global minimum of the function ( )F λ . 
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Here again, a “one-size-fits-all” approach will not be optimal for minimizing all functions ( )F λ .  

• The starting temperature maxT  relative to the function ( )F λ  must be determined/optimized, 
i.e. the numerical value of Boltzmann’s constant Bk  must be “tuned” since it is the 
proportionality constant between  E and  T:  BE k T=   

• The scale of the (mean) thermal energy ( )thU TΔ  and (logarithmic) random fluctuations in 

thermal energy ( )thU Tδ  relative to the dynamic range of numerical value(s) of the function 

( )F λ must be determined/optimized, .and. the commensurate annealing/cooling schedule 
must also be determined/optimized. 

 

• The temperature dependence of the simplex step size ( )th Tδλ  must also be optimized.  
 
     There likely will be detailed issues with “sufficiently slowly” cooling/annealing of the “metal”  
and the optimization of the annealing/cooling schedule, as success and/or failure of this function 
minimization is quite strongly dependent on the details of the annealing/cooling schedule.  
 
     Some algorithmic annealing/cooling schedule possibilities to try here are: 
 

• Reduce the temperature  T  to ( )1 Tε− every  N  moves of the simplex, where Nε  is 
empirically-determined – i.e. optimize Nε  by trial & error… 

 

• Budget a total of totN  moves of the simplex, and reduce  T  after every  N  moves to a value 

( )1max cum totT T N N α= −  where cumN  is the cumulative # simplex moves thus far and the 
exponent α  is a constant ranging from 1 4α< < . Thus, the parameters cumN  and α  need to 
be determined/optimized. 

 

• After a set of  N  moves, set  ( ) ( )( )1 bestT F Fβ λ λ= −  where β  is an empirically-determined 

(i.e. optimized) constant of { }1O  and ( )1F λ  is the smallest current value of the simplex, 

whereas ( )bestF λ  is the best-ever encountered value of the simplex. However, never allow 
the temperature  T  to be reduced by more than some small fraction 1γ <  at a time. 

 
     Another (sometimes) useful thing to do is to allow an occasional complete restart of the M-H 
+ Simplex function minimization algorithm {making certain that the best-ever encountered value 
of the simplex is not currently in the restart of the simplex!}.  
 
     For some, but not all function minimization problems, when the temperature  T  has been 
reduced by a factor of ~ 3× from its initial starting value, a restart can be beneficial/helpful. 
 
     The figure below shows the results of three random-walk Markov chains (yellow, green and 
blue) running on the 3-D Rosenbrock function 
 

( ) ( ) ( ) ( ) ( )2 22 2 2 2, , 1 1 100 100F x y z x y y x z y= − + − + − + −  
 
using the Metropolis-Hastings algorithm.  
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     The M-H algorithm samples regions of ( ), ,F x y z  and the Markov chains begin to mix in 
these regions. The approximate position of the minimum has been illuminated – as white light. 
Note that the red points are the ones that remain after a “burn-in” process. The earlier ones 
(yellow, green and blue) have been discarded. 
 

 
 


