
Fall 2012 Analysis of Experimental Measurements B. Eisenstein/rev. S. Errede

P598AEM Lecture Notes 27 1

Daddy, Where do Random Numbers Really Come From?

 In any of the MC procedures we have previously discussed we need many random numbers.
A sequence of truly random numbers is, by its nature, unpredictable and therefore not reproducible.

 A sequence of truly random numbers can only be generated by a random physical process,
e.g. radioactive decay, thermal noise in a resistor, cosmic ray arrival times, etc. If such a source
of random numbers were used for MC calculations there would be no problem − the theory we
have developed would work fine.

 In practice, it is extremely difficult to construct a physical device that is fast enough to deliver
random numbers from a random physical process as rapidly as modern computers demand them
during a calculation. Several alternatives exist. For example, some years ago Argonne National
Laboratory created a data file with 2.7 ×106 31-bit random numbers constructed from a U-235
α-particle source as follows:

 Using a high-resolution ionization counter, it was found that in a Δt = 20 msec counting time
interval, on average 24.315 α-particles were detected. When the count was odd, a 1-bit was
recorded, and when the count was even, a 0-bit was recorded. Then the bits were strung together
as 31-bit sequences of (unsigned) integers.

 Bias removal in this data set was accomplished as follows: Suppose one has a sequence of 0’s
and 1’s which is random, but the probabilities P(0) and P(1) are not both precisely equal to 1/2.

Divide the sequence into pairs, e.g. 01 10 10 10 11 01 10 01 00 10 ...

Ignore 00 and 11 pairs, so the above will become: 01 10 10 10 01 10 01 10 ...

For the remaining pairs, drop the first bit.
This will yield: 1 0 0 0 1 0 1 0 ...

Now the probability of finding a 0 or 1 in the final sequence, P′(0) and P′(1) are:

P′(0) = P(1) P(0) (since it came from a (10) pair)

P′(1) = P(0) P(1) (since it came from a (01) pair)

Thus, P′(0) = P′(1) , i.e. 0’s and 1’s are indeed equally likely in the final sequence.

Unfortunately this procedure is very wasteful, since about half of the bits are thrown out right
away, and half of the remaining ones are not used.

 The common choice in modern applications is a source of “Quasi-random” (or “pseudo-
random”) numbers. This is what is produced by random number generators on a computer.
The numbers are generated according to a strict mathematical procedure leading to a sequence
which is predictable (in advance) and certainly reproducible. Thus “random numbers” on a
computer are not at all random in the mathematical sense however, they are supposed to be
indistinguishable from a sequence generated truly randomly. That is, if one didn‘t know that the
numbers were generated by a strict mathematical procedure but one was just given the sequence,
then one would be unable to tell that a formula was used rather than a physical process.

 Unfortunately, no one has yet learned how to generate quasi-random numbers like this.

Fall 2012 Analysis of Experimental Measurements B. Eisenstein/rev. S. Errede

P598AEM Lecture Notes 27 2

One can tell the difference! However, this does not prevent people from using sequences of
such numbers as if they were truly random (or even truly quasi-random) and ignoring the fact
that, theoretically, they‘re on shaky ground…

For a long time the most widely used random # generator was the “multiplicative congruential” :

()1 modi ir ar b m−= +

where a and b are constants and mod m means take the remainder after division by m.
i.e. the ith random # is the remainder when {a(i−1)th random # + b} is divided by m.

 Since taking the operation of taking the remainder commutes with the division operation, we
can alternatively work with a pseudo-random integer sequence, and then divide the sequence of
integers by m. For example, if a = 13, b = 0, m = 31 and 0 1r = , then this pseudo-random integer
sequence begins with: 1, 13, 14, 27, 10, 6, 16, 22, 7, 29, 5, 3, … the next random # is

()13 3 0 mod 31 39 31 8ir = ⋅ + = − = .

 The first 30 terms in this sequence are a permutation of the integers 1−30, but then the
random # sequence repeats itself, i.e. it has period m − 1.

 If the pseudo-random integer sequence such as the one above is then scaled by dividing by m,
the result are floating-point #’s that are uniformly distributed on the interval [0,1]. In our above
example: 0.0323, 0.4194, 0.4516, 0.8710, 0.3226, 0.1935, 0.5161, …

 Obviously, one doesn’t want a sequence of random #’s with a short period, so one chooses m
to be a very large integer, along with choices for a and b. For example, in the 1960’s, Scientific
Subroutine Package (SSP) on IBM mainframe computers had a multiplicative congruential
random # subroutine RND (or RANDU) for use with 32-bit computation, with

162 3 65539a = + = , b = 0 and 312 2147483648m = = . Because of the choice 162 3a = + , note
that the multiplication operation 1iar− can be carried out by a shift operation + addition operation,
which was motivated by speed considerations on such computers of that era. It can be shown that
for this choice of IBM’s random # parameters that:

() 31
1 16 9 mod 2 for all i i ir r r i+ −= −

i.e. there were extremely high correlations between 3 sequential random #’s in IBM’s code!

 Over the years, collectively we have learned that the success of a random # generator is not
related to its complexity. In fact, an arbitrary invention of great complexity is:

 a.) probably very hard to analyze as far as its properties are concerned, and
 b.) likely to be a poor generator, giving very un-random like sequences.

 During the 1960’s, many random # generators were tried and tested.

 By the mid-1970’s, only the multiplicative congruential type were seriously used.

Fall 2012 Analysis of Experimental Measurements B. Eisenstein/rev. S. Errede

P598AEM Lecture Notes 27 3

 Normally m is chosen as 2t , where t is the number of bits used to represent an integer on
the machine. Since a and 1ir − are t-bit integers, their product has 2t bits. After b is added (often
b = 0) the lowest t bits are kept as ir . Finally, ir is divided by m to give a floating point number
between 0.0 and 1.0 .

 One property of most random # generators, including the multiplicative congruential ones, is
their period. Obviously, once any specific number occurs a second time, the sequence following
it is the same thereafter. For multiplicative congruential random # generators, the period is
dependent on a, b, and 0r , the initial, or “seed” random number which must be chosen before the
random # sequence is generated.

 The maximum period can be shown to be of length (m/4). For typical 32-bit computers
today, t = 31 (the remaining bit is used for a sign) and 2 t = 2 147 483 648, which limits the
maximum length of a random # sequence to about 500 million.

Testing Random # Generators:

 In the past, it was dangerous to depend on the random # generators supplied with the subroutine/
function libraries of some computer systems. For example, as mentioned previously RANDU
(distributed by IBM with the 360), was found (right away) to be poor, but that was already too late!
Even 10-20 years later (i.e. in the 1970’s−80’s) people were still using RANDU! Eeeeek!!!

 In the “dark” ages (1960’s) there was no deep understanding of quasi-random # generators
and so the tests were not very specific. Typically, just “apparent randomness” was tested.

For example, consider the sample mean of a sequence of N random #’s:
1

1 N

i
i

r r
N =

= ∑

 If the ir are a set of N random numbers drawn from ()0,1U then we know that ˆ 1 2 0.5r = =

and that { }1 12r Nσ = .

 So we check the generator to see if r is within 2σ of 0.5, which it should be 95% of the time.
If the random # generator were to fail this test, we would say that “it fails the test at the 5% level”.
Note − this actually proves nothing, since for true random #’s, we expect them to fail 5% of the
time! If the random # generator passes this test, we might go on to look at rσ , which we find by
generating a long sequence of random numbers and dividing it up into groups of size N.

 In reality we use batteries of more complicated tests. Then we assume that, having passed all
of these tests, the generator will also pass the next test. The “next” test is the requirement that it
be “random enough” to work properly in your problem. It is not known, in general, why it
should pass this test, but it isn‘t known, either, why it should not.

 A very different kind of test was discovered in 1962 by a high-energy physicist (Joe Lach) who
was trying to understand why the random # generator that came with IBM‘s 709 gave larger
fluctuations than expected. He displayed the random #’s on a CRT. (In those days, this was not a
common procedure!) When he divided his random # sequence into pairs and plotted them as (x,y)
coordinates of points, he saw nothing strange, just a uniform density of points. Then he divided it
into triplets, considering each as the (x,y,z) of a point in 3-D space. When he plotted the (x,y)
coordinates for all triplets for which z < 0.1 he saw the points falling into a set of slanted bands
with no (x,y) values in between, as shown in the figure below:

Fall 2012 Analysis of Experimental Measurements B. Eisenstein/rev. S. Errede

P598AEM Lecture Notes 27 4

 This phenomenon was later shown by George Marsaglia to be a “defect” (i.e. a feature) of all
multiplicative congruential random # generators. In Random Numbers Fall Mainly in the
Planes, (PNAS, Vol 61, 1968) he showed that if successive d-tuples from such a random #
generator are taken as coordinates of points in d-dimensional space, all of the points will lie on a
certain finite number of parallel hyperplanes. (The original discovery saw 3-D planes projected
onto 2-D. They are “tilted” and thus appear as bands in 2-D.)

 The maximum number of hyperplanes depends on d and the number of bits used for integer
representation on the particular computer being used:

The maximum number of hyperplanes = ()1!2
dtd . This gives:

t d = 3 d = 4 d = 6 d = 10
16 73 35 19 13
32 2953 566 120 41
60 1905389 72527 3065 289
64 4801280 145055 4866 382

Moral: Never trust a random # generator on a 16 bit machine, unless it uses double-precision!!!

 Even 32 bits may be dangerous, e.g. for carrying out a 10-dimensional integral.

Warning: Maximum number is just that. For an arbitrary choice of the parameters a and b in
 ()1 modi ir ar b m−= + it can be smaller.

 As a result of Marsaglia’s work, and other efforts at the same time (early 70’s) we now
understand multiplicative congruential random # generators very well.

 Still, it is not safe to assume that the people who supply them with computers understand
them. One should only trust those with “pedigrees”, e.g. those from CERN, SLAC, ANL,
ORNL, etc. Often these have been designed to give “better” random #’s. For example, it has
been shown that by using a random # generator such as ()1 2 modi i ir ar br m− −= + where a and b
are chosen carefully one can increase the number of hyperplanes by a factor of 2 t / d .

0.0 1.0

1.0
y

x

Fall 2012 Analysis of Experimental Measurements B. Eisenstein/rev. S. Errede

P598AEM Lecture Notes 27 5

 Since the 70’s, considerable progress has been made on developing several new types of
random # generators that don’t have the above-mentioned problems that multiplicative
congruential random # generators suffer from. One such random # generator is RANLUX, which
has a solid theoretical basis in chaos theory, based on the work of M. Lüscher, which in turn is
based on work by G. Marsaglia and A. Zaman, regarding so-called lagged Fibonacci sequence
generators. These generators and other modern random # generators are efficient and have very
long repeat periods of up to ~ 1043 and pass extensive “DIEHARD” or TESTU01 batteries of
tests, for which the most commonly available multiplicative congruential random # generators
fail, with repeat periods of less than 232 ~ 4.3×109.

The interested reader is referred to the following papers:

1.) “Uniform Random Number Generators: A Review”, Pierre L’Ecuyer, Proc. 1997 Winter
 Simulation Conference, IEEE Press, Dec. 1997, 127-134.
2.) “A review of pseudorandom number generators”, F. James, Comp. Phys. Comm. 60, 329-344 (1990).
3.) “RANLUX: A Fortran implementation of the high-quality pseudorandom number generator
 of Lüscher”, F. James, Comp. Phys. Comm. 79, 111 (1994).
4.) “A portable high-quality random number generator for lattice field theory simulations”, M.
 Lüscher, Comp. Phys. Comm. 79 100 (1994).
5.) “Maximally Equidistributed Combined Tausworthe Generators”, Pierre L’Ecuyer,
 Mathematics of Computation 65, 213 (1996).
6.) “Tables of Maximally Equidistributed Combined LFSR Generators”, Pierre L’Ecuyer,
 Mathematics of Computation 65, 225 (1999).
7.) “Mersenne Twister: A 623-Dimensionally Equidistributed Uniform Pseudo-Random Number
 Generator”, M. Matsumoto and T. Nishimura, ACM Transactions on Modeling and
 Computer Simulations, Vol. 8, No. 1, January 1998, 3-30.
8.) “Some difficult-to-pass tests of randomness”, G. Marsaglia and W.W. Tsang, Journal of
 Statistical Software, Volume 7, 2002, Issue 3.
9.) “Some portable very-long-period random number generators”, G. Marsaglila and A. Zaman,
 Computers in Physics, Vol. 8, No. 1, Jan/Feb. 1994.
10.) “A New Class of Random Number Generators”, G. Marsaglila and A. Zaman, The Annals
 of Applied Probability 1991, Vol. 1, No. 3, 462-480.
11.) W. H. Press, et al., Numerical Recipes, 3rd Ed., Cambridge University Press, New York, 2007.
12.) D.E. Knuth, The Art of Computer Programming, Vol. II, 3rd Ed., Addison-Wesley, Reading,
 Mass. 1998.

 The Marsaglia Random Number CDROM including the Diehard Battery of Tests of
Randomness is available on the web at the following URL: http://www.stat.fsu.edu/pub/diehard/

 Info on the TESTU01 test suite is available on the web at the following URL:
http://www.iro.umontreal.ca/~simardr/testu01/tu01.html

 Info on Dieharder, another random # generator test suite is available at the following URL:
http://www.phy.duke.edu/~rgb/General/dieharder.php

 High-quality random # generators are essential in today’s world of ever-increasing compute
power for use in ciphers & encryption – i.e. secure communications and financial transactions
e.g. on the internet and elsewhere…

Fall 2012 Analysis of Experimental Measurements B. Eisenstein/rev. S. Errede

P598AEM Lecture Notes 27 6

Quasi-Monte Carlo:

 If we in use sequences of quasi/pseudo-random numbers for Monte Carlo, then we are
factually doing “Quasi-MC”, but in practice we still call it “Monte Carlo”. A theoretical basis
exists that justifies the use of Quasi-MC, based on the work of Weyl. The bottom line is that it
works and typically shares the properties of a true MC, such as 1 N convergence.

Non-Uniform Random Numbers:

 We frequently need to generate random #’s with P.D.F.‘s other than ()0,1U .We have already

seen how to generate (),U a b , as ()i ix a b a r= + − , however often we need non-uniform random

#’s. A long time ago (in early lectures), we saw a trick for generating ()0,1N from ir which are

()0,1U :
12

1
6i

i
r

=

−∑ is approximately Gaussian, with expectation value zero and variance one.

However, it has no tails beyond 6σ± (i.e. here, 6±).

Gaussian Random Number Generation:

If we define (the Box-Muller transformation):

()
()

1 1 2

2 1 2

2 ln cos 2

2ln sin 2

z u u

z u u

π

π

= −

= −

where ()1 2,u u are independent and drawn from ()0,1U . Then 1z and 2z are independent and

each is distributed as ()0,1N , i.e. () 2 2
1 22 2

1 2
1 1,
2 2

z zg z z e e
π π

− −=

Random Triangular P.D.F.

 We also saw earlier that if u and v are independent and drawn from ()0,1U then u + v has a
triangular P.D.F.

Random Square-Root P.D.F.

 We can also show that if we generate (),u v pairs but keep only the larger one (call it x), then

x is distributed as x .

A General Method for Non-Uniform Random Numbers:

 Suppose we are given some P.D.F. ()g y and we wish to generate a sequence of random #’s

distributed according to ()g y . Suppose we have available a sequence of random #’s x,

distributed as ()0,1U . Then:

() () 1g y dy f x dx dx= =

Fall 2012 Analysis of Experimental Measurements B. Eisenstein/rev. S. Errede

P598AEM Lecture Notes 27 7

 It turns out to be useful here to use the Cumulative Distribution Function ()G y which is
related to the P.D.F. by:

() ()g y dG y dy=

Recall that ()G y is the probability that the random variable will be have a value y≤ , and that

()0 1G y≤ ≤ . In general, we can find ()G y from ()g y by integration: () ()
y

G y g y dy
−∞

′ ′= ∫

n.b. here “−∞” stands for the smallest value of y allowed by the P.D.F., which might in fact be −∞.

Let us rewrite the integral in terms of x. The smallest allowed value of x is 0, and let x
correspond to the chosen y:

() () ()
0

y x
G y g y dy f x dx

−∞
′ ′ ′ ′= =∫ ∫

But x is still some random number distributed according to ()0,1U , call it “r”. Thus:

() ()
y

G y g y dy r
−∞

′ ′= =∫

If we can invert this, i.e. solve for y as a function of r, then we’re done, that is: ()1y G r−=
will have the desired P.D.F.

y

1

()dx g y dy=

()y x

y

()g y

() ()
y

x G y g y dy
−∞

′ ′= = ∫

Here, x lies between 0 and 1
in an interval dx. (Both dx’s
are the same.) We project

onto the function G(y).

The corresponding y is more
likely to be in a narrow interval

dy in a region where G(y) is
rapidly varying (i.e. near the
maximum of g(y)) rather than

where g(y) is small, where G(y) is
slowly varying.

Fall 2012 Analysis of Experimental Measurements B. Eisenstein/rev. S. Errede

P598AEM Lecture Notes 27 8

Random Exponential Distribution:

Let us distribute random numbers exponentially:

() 0
0 otherwise

xce x
f x

α−⎧ ≥
= ⎨
⎩

Here: () () ()
0

1
x x x xcF x f x dx ce dx eα α

α
′− −

−∞
′ ′ ′= = = −∫ ∫

In order to normalize this function, we require () 1F ∞ = , or c α= .

∴ () 0
0 otherwise

xe x
f x

αα −⎧ ≥
= ⎨
⎩

 and () 1 xF x e α−= −

In order to generate random numbers distributed in this way, just pick an ir from ()0,1U ,

then set ()i ir F x= and solve for ix :

1 ix
ir e α−= − or: 1 ix

ir e α−− = or: ()()ln 1i ix r α= − −

Note that since ir is drawn from ()0,1U , then so is 1 ir− , and hence with no loss of generality

we can instead use: ()lni ix r α= − (and save a bit of computer time).

Exponential distributions are often encountered as lifetimes of unstable states (te τ− , so that 1α τ=)
or in the absorption of radiation by matter (xe λ− where λ = mean free path), etc.

Uniform cosθ Distribution:

Another example: ()
sin for 0

0 elsewhere
c

f
θ θ π

θ
≤ ≤⎧

= ⎨
⎩

Now () () ()

0
sin 1 cosF f d c d c

θ θ
θ θ θ θ θ θ

−∞
′ ′ ′ ′= = = −∫ ∫

Demanding () 1F π = gives 1 2c = . ∴ () 1
2 sinf θ θ= and: () ()1

2 1 cosF θ θ= −

So if ir is drawn from ()0,1U , then we set ()1
2 1 cosi ir θ= − .

()f θ

θ

Fall 2012 Analysis of Experimental Measurements B. Eisenstein/rev. S. Errede

P598AEM Lecture Notes 27 9

This gives: cos 1 2i irθ = − or: ()1cos 1 2i irθ −= − . Again, with no loss of generality we can set
1cosi isθ −= where is is drawn from ()1,1U − . This also follows directly from the following:

We can approach this same problem slightly differently: () 1 1
2 2sin cosf d d dθ θ θ θ θ= = −

 This means that a “ sinθ ” distribution in the variable “θ ” corresponds to a Uniform
distribution in the variable “ cosθ ” over the same region. So if we draw cosθ from ()1,1U −
we will get the same angle distribution as throwing θ according to sinθ .

Random Isotropic Direction in 3-D:

 We can apply the above idea to the problem of generating a random unit vector,
i.e. a vector whose magnitude is 1 but which can point in any direction on the unit sphere.

Then the number of resulting vectors pointing into any dA should be proportional to dA.
But 2 1dA r d d= Ω = Ω on the unit sphere, and sin cosd d d d dθ θ ϕ θ ϕΩ = = .

 However, θ and ϕ are independent random variables and hence we can “throw” them
independently by choosing random cosθ drawn from ()1,1U − and ϕ drawn from ()0, 2U π .
Then this will give the desired distribution, uniform in dΩ .

i.e. explicitly, choose:
cos 1 2

 2
i i

i i

r
s

θ
ϕ π

= −⎧
⎨ =⎩

 where ir and is are drawn from ()0,1U .

Then the unit vector ()ˆ sin cos ,sin sin ,cosi i i i iv θ ϕ θ ϕ θ= will be distributed randomly over the unit sphere.

This method won’t always work for a general ()g y because:

• It may not be possible to integrate and get () ()
y

G y g y dy
−∞

′ ′= ∫ in a simple form

 (e.g. in terms of elementary functions)

• It may not be possible to invert and solve ()i ir F x= for ()1
i ix F r−=

dΩ
dA

Fall 2012 Analysis of Experimental Measurements B. Eisenstein/rev. S. Errede

P598AEM Lecture Notes 27 10

Random Uniform Distribution on a 2-D Disk:

As an another example, let us randomly, uniformly populate the interior of a semicircle.

 Specifically, we want the number of x’s generated in the interval x x dx→ + to be
proportional to 21 x− . Thus, the P.D.F. we want to generate according to this will be:

()
21 1 1

0 otherwise
x xf x

⎧⎪ − − ≤ ≤= ⎨
⎪⎩

The corresponding Cumulative Distribution Function is:

() () 2 2 1

1 1
1 1 sin

2

xx x cF x f x dx c x dx x x x−

−∞ − −

⎡ ⎤′ ′ ′ ′ ′ ′= = − = − +⎣ ⎦∫ ∫

If we set ()F x r= , a random #, we will unable to invert this and solve for x as a function of r.

 In such cases we can use the “Von Neumann MC Acceptance-Rejection Method”, a kind
of “hit-or-miss” MC technique. Here, for example, we:

(1) Pick a random # ix drawn from ()1,1U − and a random # iy drawn from ()0,1U .

(2) We then calculate () 21i if x x= − .

(3) If () 21i i iy f x x< = − we keep ix ; otherwise we reject ix and go to step (1) and repeat…

(−1,0 (1,0

•
(0,1

()f x

x• •

2 2 1x y+ =

•
1x = − 1x = +

•

•
•

ix

•

• x

()if x

()f x

max 1f =

Fall 2012 Analysis of Experimental Measurements B. Eisenstein/rev. S. Errede

P598AEM Lecture Notes 27 11

 Step (1) uniformly populates the outer dotted rectangle. By rejecting ix ’s for which the
corresponding iy is outside the red semi-circle, we end up with “hits”, i.e. ix ’s such that the
number of kept ix ’s between x x dx→ + is proportional to ()f x dx , being large where ()f x is

large and small where ()f x is small, i.e. we randomly populate the interior of the semi-circle
by rejecting points that fall outside of the semi-circle.

We now generalize the MC “hit-or-miss” (aka the “acceptance-rejection”) method:

 Suppose we have a general/arbitrary function ()f x in the range a x b≤ ≤ , and wish to generate
random #’s ix as if the function were a P.D.F. between a x b≤ ≤ , as shown in the figure below:

Find/determine the value maxf such that () maxf x f≤ in the range a x b≤ ≤ . Then:

(1) Pick a random # ix drawn from (),U a b and a random # iy drawn from ()0,1U .

(2) We then evaluate ()if x .

(3) If ()i iy f x< we keep ix ; otherwise we reject ix and go to step (1) and repeat…

 Note that this technique also gives ()
b

a
f x dx∫ if we keep track of the # of tries and the # of

successes, since:

() ()
() max

area under # of successes
of tries area under rectangle

b

a
f x dxf x

b a f
= =

−
∫

It is also straightforward to generalize this method to the case of a multi-dimensional function.

 The MC “acceptance-rejection” method will be most efficient (i.e. fewest # of tries) when

maxf is as small as possible, however this smallest value may not be simple to find in the more
general case where the function f is a very complicated multi-dimensional function.

x

()f x

a b

()maxf x

Fall 2012 Analysis of Experimental Measurements B. Eisenstein/rev. S. Errede

P598AEM Lecture Notes 27 12

 Depending on the details of the shape of ()f x , one can improve the efficiency of the above
acceptance-rejection algorithm by using an (elementary) importance-sampling technique. In the
figure shown below, the ()f x is such that we can use two rectangular boxes to improve the
efficiency/speed of this algorithm:

Random Numbers from Histogrammed Distributions:

 We can also generate random #’s that follow distributions that cannot be described
analytically by simple continuous functions. For example, suppose we wish to generate random

ix ’s according to a histogram:

5

5

10

x

5

10

20

30

Σbins

x

The given histogram is on the left, its associated Cumulative histogram on the right.

x

()f x

a b

()
1maxf x

()
2maxf x

Fall 2012 Analysis of Experimental Measurements B. Eisenstein/rev. S. Errede

P598AEM Lecture Notes 27 13

 Since the sum of the contents of all bins is 27, we throw a random number r according to
()0, 27U and use a table:

If: Keep:
0 5r≤ ≤ x = 0
5 14r< ≤ x = 1

14 17r< ≤ x = 2
17 21r< ≤ x = 3
21 27r< ≤ x = 4

We can use an analogous procedure if we are given a set of discrete probabilities. For example,
suppose we know that:

()
()
()

1

2

3

0.0 0.3

0.3 0.9

0.9 1.0

P x P

P x P

P x P

≤ ≤ =

≤ ≤ =

≤ ≤ =

 where: 1 2 3 1P P P+ + =

Then we obtain random # p drawn from ()0,1U .

 If 10 p P< ≤ we select the x-interval 0.0 0.3x≤ ≤ .
 If 1 1 2P p P P< ≤ + we select the x-interval 0.3 0.9x≤ ≤ .
 Otherwise we select the x-interval 0.9 1.0x≤ ≤ .

 Then we must decide separately (we are not given any information here) how to pick a
particular value of x in one of these intervals. We could e.g. pick 0.15x = each time we landed
in the first region, or we could pick x from ()0.0,0.15U , or ...

 The same procedure can be used when simulating a physical process. At some instant of time or at
a point in 3-D space, a choice must be made between different outcomes with different probabilities.

 For example, a neutron, having arrived at some point in the matter it is traversing, can at that
point undergo an elastic scattering, be absorbed by a nucleus, etc., each with different
probabilities (which depend on the material and the energy of the neutron).

 MC techniques are commonly used to do integrals, simulate physical processes to answer
physics questions, etc. In high energy physics they are frequently used to simulate data which
resembles as closely as possible the expected signals from real detectors. These are then used as
input to the programs that “reduce” the signals (e.g. obtain digitized times, pulse heights, etc.) to
meaningful quantities, and (perhaps) fit them to theoretical models which extract basic
parameters. Since the MC input is completely understood, the data analysis programs can be
checked to see if they work as they are intended to.

 A less common MC application is to the Propagation of Large Errors. Here “large” means
that we cannot use standard approximations for combining errors and we must calculate, exactly,
the P.D.F. of the result of some combination of measurements, which may be very difficult to do
analytically.

Fall 2012 Analysis of Experimental Measurements B. Eisenstein/rev. S. Errede

P598AEM Lecture Notes 27 14

 An interesting example is provided by a tritiumβ -decay experiment (no longer taken
seriously!) which was the first to claim evidence in support of “neutrino oscillations”.

 Theory had shown that a quantity R could be measured and that the (electron) neutrino was
not stable (i.e. it oscillated) if 0.42R ≤ .

For this experiment it turned out that:
()2 2 1

aR
d kdb c a

k e e

=
⎛ ⎞− − −⎜ ⎟
⎝ ⎠

The numerical values of the constants (and their uncertainties), as measured by this experiment were:

 3.84 1.33
 74.0 4.0

 9.5 3.0
0.112 0.009
0.320 0.002
 0.89

a
b
c
d
e
k

= ±
= ±
= ±
= ±
= ±
=

 If one assumes that the linear approximation in the Taylor series expansion for error
propagation is valid, then one obtains: ()0.191 0.073 0.42R = ± ≤ , which is a

()0.420 0.191 0.073 3.1σ− effect.

 If we assume that all uncertainties are Gaussian/normally-distributed, then the probability
that a measurement will be more than 3.1 standard deviations from its expectation value (i.e. a
value of R > 0.42) is 0.001, or 0.1%. The authors thus claimed that their experimental result was
strong evidence for neutrino oscillations…

Fall 2012 Analysis of Experimental Measurements B. Eisenstein/rev. S. Errede

P598AEM Lecture Notes 27 15

 However, note that the parameters a and c have very large uncertainties (on the order of
30%) and so e.g. 2 2 1a aσ in the Taylor series expansion for error propagation is not satisfied.
Recall from P598AEM Lect. Notes 5 that the “familiar” formula for the standard deviations of
products xy and quotients x/y requires this to be so!

 In such a case, a more correct procedure would be (assuming that the P.D.F.s of the
measurements are indeed purely Gaussian) to randomly generate (), , , , 1,i i i i ia b c d e i N= ,
each according to its own P.D.F. (using the central value and standard deviation measured in the
experiment) and then calculate the corresponding value of iR for each set of , , , ,i i i i ia b c d e .

 If we actually count the # of entries beyond 0.42R = in the above histogram, we discover that
about 4% of the R values exceed 0.42. Thus, there is in fact a 4% (not 0.1%!!!) chance that a
“stable neutrino” will yield the results of the experiment. This is why the first claim of evidence
for neutrino oscillations obtained from measurements of endpoint of the tritiumβ -decay
spectrum was not taken too seriously…

 The use of MC Propagation of Large Errors techniques is potentially even more powerful
than that described above. In the above example, suppose e.g. some (or even all) of the
uncertainties on the a-e parameters in the R-expression are not exactly Gaussian/normally-
distributed but in fact have “tails” on them.

 By making a semi-log plot of each quantity a-e, there should be clear evidence for a
Gaussian, parabola-shaped “core” to distribution for small σ -values, however for large σ -
values, low-level “tails” of the distribution may arise e.g. from one or more unaccounted-for
physics source(s), possibly having a Gaussian-type parabola-shape to it. In fact, a double-
Gaussian LSQ fit of the uncertainty distribution for a common mean xμ can easily be carried out
of the form:

() ()1 21 1, ,x x x xg gα μ σ β μ σ+

where we expect
1 2x xσ σ< and thus the normalization constants α β> . If double-Gaussian LSQ

fit results accurately described each of the above example’s a-e variables, then the LSQ fit
parameters could be used directly in an enhanced version of the above MC simulation of R to
obtain an improved determination of the overall uncertainty on R – and more importantly, a
P.D.F. for R from which an improved estimate of the probability for exceeding R > 0.42 could
thus be obtained.

 Furthermore, with the use of MC Propagation of Large Errors techniques, asymmetrical
errors and/or non-Gaussian uncertainties associated with the a-e variables can also easily be
incorporated in the MC simulation – even using e.g. actual histograms of the experimentally
measured uncertainties on the a-e parameters as MC P.D.F.’s of the same.

 Additionally, correlations between any/all of the a-e variables can also be accurately
modeled via MC simulation as well.

 Thus, it can be seen that the use of MC Propagation of Large Errors techniques in principle
is accurate to all orders in the (infinite) Taylor series expansion that we use - only in the linear
regime (e.g. 2 2 1a aσ) for error propagation.

 Potentially, MC Propagation of Large Errors techniques are very powerful, indeed!!!

Fall 2012 Analysis of Experimental Measurements B. Eisenstein/rev. S. Errede

P598AEM Lecture Notes 27 16

 Lots of useful MC techniques such as the ones discussed above and more (e.g. “tricks of the
trade”!) are contained in “A Third Monte Carlo Sampler”, LASL Informal Report LA-9721-MS,
Los Alamos National Laboratory, by C.J. Everett and E.D. Cashwell (1983).

 This document e.g. describes techniques for generating pairs or triplets, etc. of correlated
Gaussians, and more!

 See also e.g. the Monte Carlo Techniques section of the Review of Particle Physics, available
on the web at the following URL: http://pdg.lbl.gov/

The following books also have much useful/helpful information on various MC techniques:

W. H. Press, et al., Numerical Recipes, 3rd Ed., Cambridge University Press, New York, 2007.

D.E. Knuth, The Art of Computer Programming, Vol. II, 3rd Ed., Addison-Wesley, Reading, MA 1998.

