%========================================================================== % Gaussian_CL_Erf_Int.m % % Calculates double-sided (DS) and single-sided (SS) Confidence Intervals % and Confidence Levels (aka P-values) for the Gaussian/Normal dist'n % as a fcn of N-sigma cut, using the Erf(x) fcn... % % Created by Prof. Steven Errede 09/20/2012 10:00 hr % % Last updated: 09/27/2012 14:50 hr {SME} % %========================================================================== % Please see/read UIUC Physics 598AEM Lecture Notes 8 p. 3-8 for details: % http://courses.physics.illinois.edu/phys598aem/598aem_lectures.html %========================================================================== % % Nsig = # sigma = (Xhi-Xo)/Xsig = (Xo-Xlo)/Xsig (Here: Xo = 0, Xsig = 1) % DS Prob is the area under the Gaussian within central band of +_ Nsig. % DS (1-Prob) is the remaining area - in the hi/lo-side tails of Gaussian. % % Nsig DS Prob(Nsig) DS (1-Prob(Nsig)) SS Prob(Nsig) SS (1-Prob(Nsig)) % ======== ============= ================= ============= ================= % 0 0.000000 1.000000 0.500000 0.500000 % 1 0.682689 0.317311 0.841345 0.158655 % 2 0.954500 0.045500 0.977250 0.022750 % 3 0.997300 0.002700 0.998650 0.001350 % 4 0.999937 0.000063 0.999968 0.000032 % 5 0.999999 6x10^-7 1.000000 0.000000 % 6 1.000000 2x10^-9 1.000000 0.000000 % % 0.674500 0.50 0.50 0.750000 0.250000 % 1.644854 0.90 0.10 0.950000 0.050000 % 1.959964 0.95 0.05 0.975000 0.025000 % 2.579964 0.99 0.01 0.995000 0.005000 % 3.290567 0.999 1x10^-3 0.999500 0.000500 % 3.890592 0.9999 1x10^-4 0.999950 0.000050 % 4.417173 0.99999 1x10^-5 0.999995 0.000005 % %========================================================================== clear all; close all; double Xcut; Npts = 12; Nsig = zeros(1,Npts); Prob_ds = zeros(1,Npts); Prob_ss = zeros(1,Npts); fprintf('\n'); fprintf('\n================================================================='); fprintf('\n=== Gaussian Double-Sided & Single-Sided Confidence Intervals ==='); fprintf('\n=== Uses Erf(x) Method ==='); fprintf('\n================================================================='); fprintf('\n'); fprintf('\n j Nsig(j) Prob_DS(j) 1-Prob_DS(j) Prob_SS(j) 1-Prob_SS(j)'); fprintf('\n === ======= ========== ============ ========== ============'); for j = 1:Npts; Nsig(j) = 0.5*j; % # of Sigma Xcut = double(Nsig(j)/sqrt(2.0)); Prob_ds(j) = erf(Xcut); % carry out erf(x) calculation in double-precision.. Prob_ss(j) = 1.0 - 0.5*(1.0-Prob_ds(j)); % n.b. thus: Prob_ss(j) = 0.5*(1.0 + Prob_ds(j)) fprintf('\n %2i %3.1f %8.6f %8.6f %8.6f %8.6f',j,Nsig(j),Prob_ds(j),(1.0-Prob_ds(j)),Prob_ss(j),(1.0-Prob_ss(j))); end beep(); fprintf('\n'); fprintf('\n Gaussian_CL_Erf_Int calculations completed! \n');