Laser-cooling and scattering forces

Metcalf \& van der Straten, Laser Cooling and Trapping

Laser-cooling and scattering forces

At room temperature,
William D. Phillips: Laser cooling and trapping of neutral atoms typical speeds on the order of few $\times 100 \mathrm{~m} / \mathrm{s}$

Laser-cooling and scattering forces

need to excite / de-excite few $\times 10,000$ times!

At room temperature,
William D. Phillips: Laser cooling and trapping of neutral atoms typical speeds on the order of few $\times 100 \mathrm{~m} / \mathrm{s}$

For sodium (23 amu), $\lambda \sim 600 \mathrm{~nm}, \frac{\hbar k}{\mathrm{~m}} \sim 3 \mathrm{~cm} / \mathrm{s}$

Laser-cooling and scattering forces

At room temperature, typical speeds on the order of few $\times 100 \mathrm{~m} / \mathrm{s}$

For sodium (23 amu), $\lambda \sim 600 \mathrm{~nm}, \frac{\hbar k}{m} \sim 3 \mathrm{~cm} / \mathrm{s}$

Making a "2-level" atom

For σ_{+}

Effective "2-level atom"

Metcalf \& van der Straten, Laser Cooling and Trapping

Making a "2-level" atom

Cycling transition - cycles back and forth many times between two states

For σ_{-}

Effective "2-level atom"

Metcalf \& van der Straten, Laser Cooling and Trapping

Making a "2-level" atom

Cycling transition - cycles back and forth many times between two states

Can you make a cycling transition on the D1 line?

Metcalf \& van der Straten, Laser Cooling and Trapping

Making a "2-level" atom

Cycling transition - cycles back and forth ... until it doesn't

$$
\text { For } \sigma_{+}
$$

Effective "2-level atom"
polarization not perfect...
sometimes drive wrong transition

Metcalf \& van der Straten, Laser Cooling and Trapping

Making a "2-level" atom

Cycling transition - cycles back and forth ... until it doesn't

$$
\text { For } \sigma_{+}
$$

Effective "2-level atom"
polarization not perfect...
sometimes drive wrong transition

Metcalf \& van der Straten, Laser Cooling and Trapping

Making a "2-level" atom

Cycling transition - cycles back and forth ... until it doesn't

$$
\text { For } \sigma_{+}
$$

Effective "2-level atom"
polarization not perfect...
sometimes drive wrong transition
add a "repump" to plug the hole

Making a "2-level" atom

For some atoms, cycling transition well-resolved ($\Delta \gg \Gamma$)

Making a "2-level" atom

For others, excited-state hyperfine structure no well-resolved ($\Delta \sim \Gamma$)

Lots of repump light is needed
slightly harder, but still relatively straightforward (only one loss pathway to plug)

Laser-cooling and scattering forces

a

William D. Phillips: Laser cooling and trapping of neutral atoms

Slowing down atomic beams

atomic
beam $\square \longrightarrow$ source

Effect of slowing: simple case
cooling laser

Doppler shift! $\quad \delta=\omega-\omega_{e g}+k v$
Can't address all atoms (if spread in velocity) and quickly go off-resonant

Zeeman slowers

Compensate Doppler shift with shift of resonance (or alternatively shift of light frequency)

Zeeman slowers

Compensate Doppler shift with shift of resonance (or alternatively shift of light frequency)

1D Doppler cooling - optical molasses

Electromagnet Zeeman slowers

Orzel lab, Union

Permanent magnet Zeeman slowers

Reconfigurable Zeeman slowers

Zelevinsky group, Columbia

The Doppler limit - how low can you go?

$$
k_{B} T_{\text {Dopp }} \approx \frac{\hbar \Gamma}{2}
$$

But need to start with $|v| \lesssim \Gamma / k$

One approach - use multiple cooling transitions

 with successively smaller linewidths Γ| laser cooling parameter | | transition | |
| :---: | :---: | :---: | :---: |
| transition rate | $\Gamma\left(\mathrm{s}^{-1}\right)$ | 1.87×10^{8} | 1.17×10^{6} |
| lifetime | $\tau(\mathrm{ns})$ | 5.35 | 857 |
| natural linewidth | $\Delta \nu(\mathrm{MHz})$ | 29.7 | 0.19 |
| saturation intensity | $I_{\mathrm{S}}\left(\mathrm{mW} / \mathrm{cm}^{2}\right)$ | 60.3 | 0.13 |
| Doppler temperature | $T_{\mathrm{D}}(\mu \mathrm{K})$ | 714 | 4.6 |
| Doppler velocity | $v_{\mathrm{D}}(\mathrm{mm} / \mathrm{s})$ | 267 | 21 |
| recoil temperature | $T_{\mathrm{r}}(\mathrm{nK})$ | 717 | 339 |
| recoil velocity | $v_{\mathrm{r}}(\mathrm{mm} / \mathrm{s})$ | 6.0 | 4.1 |
| | Refs. | Appendix A | [Law10] |

A. Frisch, Ph.D. thesis

One approach - use multiple cooling transitions with successively smaller linewidths Γ

Erbium MOT on 401 nm transition (McClelland group, NIST Gaith.)

One approach - use multiple cooling transitions with successively smaller linewidths Γ

Erbium MOT on 583 nm transition (Ferlaino group, Innsbruck)

One approach - use multiple cooling transitions

 with successively smaller linewidths Γ
Magneto-Optical Trapping and Cooling of Strontium Atoms down to the Photon Recoil Temperature

Hidetoshi Katori, Tetsuya Ido, Yoshitomo Isoya, and Makoto Kuwata-Gonokami
Cooperative Excitation Project, ERATO, Japan Science and Technology Corporation (JST), KSP D-842, 3-2-1 Sakado, Takatsu-ku Kawasaki, 213-0012, Japan
(Received 4 September 1998)
We report narrow-line laser cooling and trapping of strontium atoms down to the photon recoil temperature. ${ }^{88} \mathrm{Sr}$ atoms precooled by the broad ${ }^{1} S_{0}-{ }^{1} P_{1}$ transition at 461 nm were further cooled in a magneto-optical trap using the spin-forbidden transition ${ }^{1} S_{0}{ }^{-}{ }^{3} P_{1}$ at 689 nm . We have thus obtained an atomic sample with a density over $10^{12} \mathrm{~cm}^{-3}$ and a minimum temperature of 400 nK , corresponding to a maximum phase space density of 10^{-2} which is 3 orders of magnitude larger than the value that has been obtained by magneto-optical traps to date. This scheme provides us an opportunity and system to study quantum statistical properties of degenerate fermions as well as bosons. [S0031-9007(98)08352-5]

PACS numbers: $32.80 . \mathrm{Pj}$
First observations by Katori, et al. in Sr

One approach - use multiple cooling transitions

with successively smaller linewidths Γ

First observations by Katori, et al. in Sr

Laser-cooling to BEC
 Narrow-line MOT of Sr

PRL 110, 263003 (2013)
PHYSICAL REVIEW LETTERS
week ending
28 JUNE 2013

Laser Cooling to Quantum Degeneracy

Simon Stellmer, ${ }^{1}$ Benjamin Pasquiou, ${ }^{1}$ Rudolf Grimm, ${ }^{1,2}$ and Florian Schreck ${ }^{1}$
${ }^{1}$ Institut für Quantenoptik und Quanteninformation (IQOQI), Österreichische Akademie der Wissenschaften, 6020 Innsbruck, Austria
${ }^{2}$ Institut für Experimentalphysik und Zentrum für Quantenphysik, Universität Innsbruck, 6020 Innsbruck, Austria

(Received 20 January 2013; published 25 June 2013)
We report on Bose-Einstein condensation in a gas of strontium atoms, using laser cooling as the only cooling mechanism. The condensate is formed within a sample that is continuously Doppler cooled to below $1 \mu \mathrm{~K}$ on a narrow-linewidth transition. The critical phase-space density for condensation is reached in a central region of the sample, in which atoms are rendered transparent for laser cooling photons. The density in this region is enhanced by an additional dipole trap potential. Thermal equilibrium between the gas in this central region and the surrounding laser cooled part of the cloud is established by elastic collisions. Condensates of up to 10^{5} atoms can be repeatedly formed on a time scale of 100 ms , with prospects for the generation of a continuous atom laser.

Laser-cooling to BEC

Narrow-line MOT of Sr
(a)

+ "dimple" to
increase density

Laser-cooling to BEC

maybe an "atom laser" in the not-too-distant future!

Laser-cooling of molecules

Tarbutt / Hinds group

Laser-cooling of solids

Laser-cooling of solids

