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Optical lattices – the big picture
We have a textbook model, which is basically exact, describing how a 
large collection of atoms will behave in free space
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pair-wise contact interactions

We can add a potential term (V), modify the kinetic energy term (T), 
and even get qualitatively new, effective interaction terms (U) by 
putting the atoms into optical lattices
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Electron matter in solid-state crystals Atomic matter in light crystals

~ 0.2-0.8 nm
λ/2 ~ 0.2-0.8 μm

Extremely dilute  – less dense than H2O
Ultracold – nK and pK temperatures
No disorder (no phonons or defects)

“exact” microscopic model

Optical lattices – the big picture
One obvious analogy: motion of atomic matter waves in laser crystals 
~ motion of electron waves in ionic crystal lattices

𝐸𝐸 ∝ 1/𝑚𝑚𝐿𝐿2
low energy scales



Optical lattices – the big picture
Not just limited to studying electronic systems – many problems can 
be mapped from continuum to lattice (example: lattice QCD)



Optical lattices – the big picture
Aside from quantum simulation / studying many-body physics, also 
just  a great way to keep atoms from moving

Campbell et al., Science 358, 90–94 (2017)

rid of Doppler shifts
for atomic clocks



Optical lattices – the big picture
Aside from quantum simulation / studying many-body physics, also 
just  a great way to keep atoms from moving

Wang et al., Science 352, 1562–1565 (2016)
trapping of qubits
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Optical lattices – laser interference

𝑉𝑉 𝑟𝑟, 𝑡𝑡 = 𝛼𝛼 𝜔𝜔 𝐼𝐼 𝑟𝑟, 𝑡𝑡

𝛼𝛼 𝜔𝜔 ∝
1

𝜔𝜔 − 𝜔𝜔0 𝐼𝐼 𝑟𝑟, 𝑡𝑡
typically formed by laser interference



Optical lattices – laser interference

Greiner/Vuletić/Lukin collab, CUA



Optical lattices – laser interference

Saffman group, Wisconsin



Optical lattices – laser interference

Browaeys group, Palaiseau
Note: such potentials have large inter-well spacing, not 
particularly well-suited to studying coherent tunneling
(exceptions: Jochim / Regal groups)



Optical lattices – laser interference
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Nature (2008) 𝑉𝑉 𝑟𝑟, 𝑡𝑡 = 𝛼𝛼 𝜔𝜔 𝐼𝐼 𝑟𝑟, 𝑡𝑡

𝛼𝛼 𝜔𝜔 ∝
1

𝜔𝜔 − 𝜔𝜔0

𝐼𝐼 𝑟𝑟, 𝑡𝑡 = ∑𝑛𝑛𝐸𝐸𝑛𝑛 𝑟𝑟, 𝑡𝑡 ̂𝜖𝜖𝑛𝑛 2

typically formed by laser interference

Lattice pattern depends on:
• frequencies
• polarizations
• directions of propagation
• relative phases
• …



Simplified 1D optical lattice
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𝑉𝑉 𝑟𝑟, 𝑡𝑡 = 𝑉𝑉offset + 𝑉𝑉0 cos2
𝜋𝜋 𝑧𝑧 − 𝑧𝑧0

𝑑𝑑

𝑉𝑉 𝑟𝑟, 𝑡𝑡 ∝ 𝐸𝐸1𝑒𝑒𝑖𝑖 𝑘𝑘𝑘𝑘−𝜔𝜔𝜔𝜔+𝜑𝜑1 + 𝐸𝐸2𝑒𝑒𝑖𝑖 −𝑘𝑘𝑘𝑘−𝜔𝜔𝜔𝜔+𝜑𝜑2
2

Note: for real laser beams (~Gaussian, not plane-wave), also get confinement 
(or deconfinement) in radial direction [i.e. V0 is a slowly-varying function of 𝑟𝑟)
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Note: for real laser beams (~Gaussian, not plane-wave), also get confinement 
(or deconfinement) in radial direction [i.e. V0 is a slowly-varying function of 𝑟𝑟)



Relevant energy scale

𝐸𝐸𝑅𝑅 =
ℎ2

2𝑚𝑚𝑑𝑑2
𝑠𝑠 = 𝑉𝑉0/𝐸𝐸𝑅𝑅

𝑑𝑑 =
𝜆𝜆

2 sin𝜃𝜃

2𝜃𝜃

The recoil energy --- for counter-propagating beams, 𝐸𝐸𝑅𝑅 =
ℏ2𝑘𝑘𝐿𝐿2

2𝑚𝑚



The energy band structure

Blue: extended zone scheme energy bands vs. momentum w.r.t. crystal
Black: folded zone scheme band structure

𝑠𝑠 =
𝑉𝑉0
𝐸𝐸𝑅𝑅

= 5

𝑠𝑠 = 5



The energy band structure

Blue: extended zone scheme energy bands vs. momentum w.r.t. crystal
Black: folded zone scheme band structure

𝑠𝑠 =
𝑉𝑉0
𝐸𝐸𝑅𝑅

= 5

Bloch
wave functions

Φ𝑞𝑞
𝑛𝑛 𝑧𝑧

𝑠𝑠 = 5

n = band index
q = quasimomentum

Note: for sinusoidal potentials, there is an exact, analytical solution for the Bloch
wavefunctions / energies in terms of the Mathieu equation (characteristic Mathieu functions)



Localized Wannier orbitals

𝑠𝑠 = 5

𝑤𝑤𝑛𝑛 𝑧𝑧 − 𝑧𝑧𝑗𝑗 =
1
𝒩𝒩
�
𝑞𝑞

𝑒𝑒−𝑖𝑖𝑞𝑞𝑘𝑘/ℏ Φ𝑞𝑞
𝑛𝑛 𝑧𝑧



Deep lattice (s >> 1), harmonic approx.

This approximation is valid, for some HO level n, for En << sER

Can approximate the Wannier states as HO orbitals (Gaussian wfs) with π𝜎𝜎/𝑑𝑑 ≈ 𝑠𝑠−1/4

ℏ𝜔𝜔 ≈ 2 𝑠𝑠𝐸𝐸𝑅𝑅

−
𝑠𝑠
2
𝐸𝐸𝑅𝑅 cos 2𝑘𝑘𝑧𝑧 ≈ 𝐶𝐶 +

𝑠𝑠𝐸𝐸𝑅𝑅
4

2𝑘𝑘𝑧𝑧 2 ≈ 𝐶𝐶 +
1
2
𝑚𝑚𝜔𝜔2𝑧𝑧2



Moving optical lattices
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𝑉𝑉 𝑟𝑟, 𝑡𝑡 ≈ 𝑠𝑠𝐸𝐸𝑅𝑅 cos2
𝜋𝜋𝑧𝑧
𝑑𝑑

+
𝜑𝜑2 − 𝜑𝜑1

2

A sudden phase jump by 𝜋𝜋/2
between the two fields will shift the 
lattice by ¼ of a wavelength

A continuous linear phase shift will make 
the lattice move with some fixed velocity 
--- this is equivalent to a fixed frequency 
detuning between the interfering beams

𝜔𝜔1 𝜔𝜔2
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A continuous linear phase shift will make 
the lattice move with some fixed velocity 
--- this is equivalent to a fixed frequency 
detuning between the interfering beams
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𝑣𝑣𝑙𝑙𝑙𝑙𝜔𝜔𝜔𝜔 = ∆𝑓𝑓 × 𝜆𝜆/2



The energy band structure

What would happen to atoms if you suddenly turned on a moving lattices, such 
that vlatt = vR, or k = kL?

𝑠𝑠 =
𝑉𝑉0
𝐸𝐸𝑅𝑅

= 5



87Rb BEC
Incoming

Laser Field
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Laser spectrum
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Diffraction from moving lattices
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Two-photon
Bragg transition

Diffraction from moving lattices



( ) FxVxV latt +=

q

E
What about applying a force?

∆𝜑𝜑 𝑡𝑡 ∝ 𝑡𝑡2



( ) FxVxV latt +=
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E

Nägerl group, Innsbruck

What about applying a force?

∆𝜑𝜑 𝑡𝑡 ∝ 𝑡𝑡2



Release of atoms from a lattice

One typically sees a diffraction pattern – the weights of the different momentum 
orders relates to the projection of the Bloch states onto free particles states



Band-mapping

Greiner, et al.

Map population in different lattice bands to unique momentum states. Slow (adiabatic)
with respect to band gap, but fast with respect to bandwidth
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Higher-dimensional lattices



Higher-dimensional lattices
(lower-dimensional systems…)

Bloch, Dalibard, Zwerger (2008)



Optical superlattices

Bloch group , Porto group, others…



Multi-beam lattice structures



Multi-beam lattice structures

Tunable 4-beam lattice (Porto group)



Multi-beam lattice structures

Tunable 6-beam lattice (Esslinger group)



Triangular lattices

Sengstock group



Triangular lattices

Sengstock group



Kagome lattices

Stamper-Kurn group
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