Cold atoms in optical lattices
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Optical lattices — the big picture

We have a textbook model, which is basically exact, describing how a
large collection of atoms will behave in free space

H=T +V+/U
Ny,
H :Z&J“ gijZ5(ﬁ _rj)
i 2m i
pair-wise contact interactions

We can add a potential term (V), modify the kinetic energy term (T),
and even get qualitatively new, effective interaction terms (U) by
putting the atoms into optical lattices



Optical lattices — the big picture

One obvious analogy: motion of atomic matter waves in laser crystals
~ motion of electron waves in ionic crystal lattices

Electron matter in solid-state crystals Atomic matter in light crystals

LARRARALILLL

A/2~0.2-0.8 um
~0.2-0.8 nm / 5

Extremely dilute — less dense than H,O “exact” microscopic model @
Ultracold — nK and pK temperatures

low energy scales
No disorder (no phonons or defects) E o 1/mi?



Optical lattices — the big picture

Not just limited to studying electronic systems — many problems can
be mapped from continuum to lattice (example: lattice QCD)
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Optical lattices — the big picture

Aside from quantum simulation / studying many-body physics, also
just a great way to keep atoms from moving
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Campbell et al., Science 358, 90-94 (2017)

rid of Doppler shifts
for atomic clocks



Optical lattices — the big picture

Aside from quantum simulation / studying many-body physics, also
just a great way to keep atoms from moving
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Wang et al., Science 352, 1562-1565 (2016)
trapping of qubits



Optical lattices — laser interference
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Cold atomic gas

Immanuel Bloch
Nature (2008)

V(r,t) = a(w)I(r,t)

[(1,¢t)

} : 1 typically formed by laser interference



Optical lattices — laser interterence
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Optical lattices — laser interterence

lasers for atom

cooling, transport, trapping

atom

cooling .

transport

qubit control
laser &

microwave qubit
sources array

S UHV cell
time and space
modulators a8 7
% . classical controller

real time ' user interface

electronics, = & Sxperimental sequencing
microcode optimization
data analysis

Saffman group, Wisconsin



Optical lattices — laser interterence

Load 2N traps
with ~N atoms

|

Initial image

|

Compute
moves

|

Move atoms
with 2d AOD

¥

Final image

Browaeys group, Palaiseau

“Type-1" move “Type-2" move

Note: such potentials have large inter-well spacing, not
particularly well-suited to studying coherent tunneling
(exceptions: Jochim / Regal groups)



Optical lattices — laser interference
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Cold atomic gas

Immanuel Bloch — - N
Nature (2008) V(T', t) o C(((U)I(T, t)

I(F, t)=|2n En(F; t) énlz

typically formed by laser interference

Lattice pattern depends on:
* frequencies

5 * polarizations
?p e directions of propagation
p e relative phases



Simplitied 1D optical lattice
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Cold atomic gas

Immanuel Bloch
Nature (2008)

V(F, t) % |Elei(kz—wt+<p1) + Ezei(—kz—wt+cp2) 2

(z — ZO))

V(r,t) =V ¢ + V, cos? < -

Note: for real laser beams (~Gaussian, not plane-wave), also get confinement
(or deconfinement) in radial direction [i.e. V, is a slowly-varying function of 7)



Simplitied 1D optical lattice
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Cold atomic gas

Immanuel Bloch
Nature (2008)

V(F, t) X |Elei(kz—wt+<p1) 1L Ezei(—kz—wt+<p2)|2

_ m(z —z 14 21z’
V(T; t) — Voffset + VO COS? ( ( O)> — V,offset + o COS ( )

d 2 d

Note: for real laser beams (~Gaussian, not plane-wave), also get confinement
(or deconfinement) in radial direction [i.e. V, is a slowly-varying function of 7)



Relevant energy scale
A2 k2
2m

The recoil energy --- for counter-propagating beams, Ep =




The energy band structure
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Blue: extended zone scheme energy bands vs. momentum w.r.t. crystal
Black: folded zone scheme band structure



The energy ba

nd struct

ur

(a) [ b ]
; |5 S T O A T
| Sof \ N 5;\ i\ r'[ \1 “‘xﬁ ;
15 = e / v
| =5 d VIRVIRVIRVE
3 10f T
| z/d z/d
q \*—/\/ Bloch
[ @ o wave functions
0k e ) o (2)
—4 -2 0 2 4 n = band index
g = quasimomentum
k/ky s=5

Blue: extended zone scheme energy bands vs. momentum w.r.t. crystal
Black: folded zone scheme band structure

Note: for sinusoidal potentials, there is an exact, analytical solution for the Bloch
wavefunctions / energies in terms of the Mathieu equation (characteristic Mathieu functions)




Localized Wannier orbitals
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Deep lattice (s >> 1), harmonic approx.

S SE 1
— 5 Eg cos(2kz) = C + TR(Zkz)Z ~ € +5mw’z?

hw = 2\/EER

V(x)/(sEg)

Can approximate the Wannier states as HO orbitals (Gaussian wfs) with o /d ~ s~ 1/4

This approximation is valid, for some HO level n, for E_ << sE;



Moving optical lattices
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Cold atomic gas

Immanuel Bloch

Nature (2008) A sudden phase jump by /2

O, — P4 between the two fields will shift the
) lattice by % of a wavelength

- Z
V(r,t) = sEp cos? ( . + >

Graph for sin(x), cos(x

A continuous linear phase shift will make

the lattice move with some fixed velocity \

--- this is equivalent to a fixed frequency AR A
detuning between the interfering beams \y/ - W \V&




Moving optical lattices

Cold atomic gas

Immanuel Bloch

Nature (2008) A sudden phase jump by /2

Tz Py — (pl) between the two fields will shift the

V(r,t) = sEg cos? ( d T > lattice by % of a wavelength

A continuous linear phase shift will make

the lattice move with some fixed velocity _

--- this is equivalent to a fixed frequency Viatt = Af X /1/2
detuning between the interfering beams



The energy band structure
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What would happen to atoms if you suddenly turned on a moving lattices, such
that v, = vg, or k =k ?



Diffraction from moving lattices

Incoming o Retro
Laser Field Rb BEC | ;5er Field E/h |
large




Diffraction from moving lattices

Incoming o Retro
Laser Field Rb BEC | ;5er Field E/h

Laser spectrum

p/2hk

Two-photon
Bragg transition

VVVV\ -




What about applying a force?




What about applying a force?

=V, + FX

latt




Release of atoms from a lattice
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One typically sees a diffraction pattern — the weights of the different momentum
orders relates to the projection of the Bloch states onto free particles states



Band-mapping

(a) A o= (b)
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Map population in different lattice bands to unique momentum states. Slow (adiabatic)
with respect to band gap, but fast with respect to bandwidth

(b) (c)

Greiner, et al.



Higher-dimensional lattices

= 1ot N

Cold atomic gas

Immanuel Bloch
Nature (2008)

Immanuel Bloch
Nature (2008)

) N _

St W



Higher-dimensional lattices
(lower-dimensional systems...)

(a)

(b)

Bloch, Dalibard, Zwerger (2008)



Optical superlattices

Bloch group , Porto group, others...



Multi-beam lattice structures
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Multi-beam lattice structures
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Tunable 4-beam lattice (Porto group)




Multi-beam lattice structures
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Triangular lattices

Sengstock group



Triangular lattices
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Kagome lattices

a - (b) UnitCell Lattice Experiment Theor
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