Cold-atom Hubbard models

www.lens.unifi.it

Interacting gases in optical lattices

For neutral atoms in a 1D lattice, forming tunnel-coupled "pancakes," many properties are qualitatively similar to what you have in a simple 3D trap

Greiner thesis

Interacting gases in optical lattices

Some qualitatively new effects can show up, however:

Dynamical \& energetic instabilities due to nonlinear interactions / band dispersion effects

Fallani, et al. 2004 PRL

Interacting gases in optical lattices

Some qualitatively new effects can show up, however:

The dynamics of a superfluid (bosonic or fermionic) in a coupled multi-well system has some parallels to the dynamics in junctions / arrays of superconductors
\rightarrow correlated many-body physics

In a 3D lattice, where the on-site density of individual atomic wavefunctions is much larger, particles can get strongly correlated at the twoand few-body level

Albiez, et al. 2005 PRL also, Steinhauer group

Mapping to discrete lattice model

For N -interacting particles (all in the same internal state), our full description of the system would look like:

$$
\begin{aligned}
H=\sum_{n} \int & d \boldsymbol{x} \hat{\psi}_{n}^{\dagger}(\boldsymbol{x})\left[\widehat{H}_{s p}\right] \hat{\psi}_{n}(\boldsymbol{x}) \\
& +\sum_{n, n^{\prime}} \frac{1}{2} \iint d \boldsymbol{x} d \boldsymbol{x}^{\prime} \hat{\psi}_{n}^{\dagger}(\boldsymbol{x}) \hat{\psi}_{n^{\prime}}^{\dagger}\left(\boldsymbol{x}^{\prime}\right) \boldsymbol{V}_{\boldsymbol{i n t}}\left(\boldsymbol{x}, \boldsymbol{x}^{\prime}\right) \hat{\psi}_{n}(\boldsymbol{x}) \hat{\psi}_{n^{\prime 0}}(\boldsymbol{x})
\end{aligned}
$$

We can get a much simpler form if we expand in terms of local Wannier orbitals, and only keep those for bands that are relevant

$$
\begin{aligned}
H=-J \sum_{n}\left(\hat{c}_{n+1}^{\dagger} \hat{c}_{n}+\hat{c}_{n}^{\dagger} \hat{c}_{n+1}\right)+ & \frac{U}{2} \sum_{n} \hat{c}_{n}^{\dagger} \hat{c}_{n}^{\dagger} \hat{c}_{n} \hat{c}_{n}+\sum_{n} \varepsilon_{n} \hat{c}_{n}^{\dagger} \hat{c}_{n} \\
\text { tunneling term } \quad & \text { interaction term } \quad \text { site energy term }
\end{aligned}
$$

Hubbard models - approximations

Lots of terms ignored (long-range tunneling, off-site interactions, inter-band transitions, etc.)

Jaksch

Hubbard models

Minimal model describing the influence of interactions on transport properties [metal-insulator transitions] of particles in lattice systems

$$
H=-J \sum_{n}\left(\hat{c}_{n+1}^{\dagger} \hat{c}_{n}+\hat{c}_{n}^{\dagger} \hat{c}_{n+1}\right)+\frac{U}{2} \sum_{n} \hat{c}_{n}^{\dagger} \hat{c}_{n}^{\dagger} \hat{c}_{n} \hat{c}_{n}+\sum_{n} \varepsilon_{n} \hat{c}_{n}^{\dagger} \hat{c}_{n}
$$

[Most basic version, for scalar particles in single band w/ NN tunneling \& on-site interactions]

$J \rightarrow$ nearest-neighbor tunneling
$U \rightarrow$ local, on-site interaction energy $\varepsilon \rightarrow$ local site energy (due to trap, etc.)

Note: developed for describing metal-insulator transitions in electronic systems.

Local U for Coulomb is not that crazy, due to screening
Jaksch, et al. PRL 1998

Hubbard models

Minimal model describing the influence of interactions on transport properties [metal-insulator transitions] of particles in lattice systems

$$
H=-J \sum_{n}\left(\hat{c}_{n+1}^{\dagger} \hat{c}_{n}+\hat{c}_{n}^{\dagger} \hat{c}_{n+1}\right)+\frac{U}{2} \sum_{n} \hat{c}_{n}^{\dagger} \hat{c}_{n}^{\dagger} \hat{c}_{n} \hat{c}_{n}+\sum_{n} \varepsilon_{n} \hat{c}_{n}^{\dagger} \hat{c}_{n}
$$

[Most basic version, for scalar particles in single band w/ NN tunneling \& on-site interactions]

$J \rightarrow$ nearest-neighbor tunneling
$U \rightarrow$ local, on-site interaction energy
$\varepsilon \rightarrow$ local site energy (due to trap, etc.)

> can tune these parameters with lasers \& B-fields!

Jaksch, et al. PRL 1998

Bose-Hubbard model (aside)

$$
H=-J \sum_{n}\left(\hat{c}_{n+1}^{\dagger} \hat{c}_{n}+\hat{c}_{n}^{\dagger} \hat{c}_{n+1}\right)+\frac{U}{2} \sum_{n} \hat{c}_{n}^{\dagger} \hat{c}_{n}^{\dagger} \hat{c}_{n} \hat{c}_{n}
$$

Tunneling term - prefers off-diagonal long-range order (coherent delocalization across lattice) On-site interaction - penalizes higher occupancies, energy reduced when density is uniform

Two competing terms
\rightarrow simple model for understanding quantum phase transitions, formal analogy to model for interacting spins

$$
H=-B_{x} \sum_{n} S_{x, n}+J_{z} \sum_{n} S_{z, n} S_{z, n+1}
$$

Lots of general interest in using these systems to explore quantum criticality in the vicinity of a quantum phase transitions

Bose-Hubbard model

Phase diagram from site-decoupled mean-field theory
(Phys. Rev. A 63, 053601, 2001)

For a trapped system, the chemical potential is going to vary across the system

Bose-Hubbard model

Incompressible Mott lobes, i.e.
Insulating regions, for strong interactions

Bose-Hubbard model

Cuts of the density in a trapped system:
"wedding cake structure" / ziggurat structure
Greiner thesis

Experimental signatures

Time-of-flight (single-particle) interference: CONTRAST \& PEAK WIDTH

Experimental ramp protocol in original experiment

$20.8 E_{r}$

17.4 E_{r}

Experimental signatures

Time-of-flight (single-particle) interference: CONTRAST \& PEAK WIDTH

$$
S(k) \propto \sum_{j, j^{\prime}=1}^{M} e^{i\left(j-j^{\prime}\right) k d}\left\langle\phi_{g}\right| \hat{a}_{j}^{\dagger} \hat{a}_{j^{\prime}}\left|\phi_{g}\right\rangle
$$

Interference pattern in k-space

$$
D_{j}(r) \propto\left\langle\phi_{g}\right| \hat{a}_{j}^{\dagger} \hat{a}_{j+r}\left|\phi_{g}\right\rangle / \sqrt{\hat{n}_{j} \hat{n}_{j+r}}
$$

off-site coherence in real-space

Experimental signatures

Time-of-flight (single-particle) interference: CONTRAST \& PEAK WIDTH

Experimental ramp protocol in original experiment

$20.8 E_{r}$

17.4 E_{r}

Experimental signatures

Time-of-flight (single-particle) interference: CONTRAST \& PEAK WIDTH

Greiner, et al. Nature 2002

Experimental signatures

Time-of-flight (single-particle) interference: CONTRAST \& PEAK WIDTH

Experimental signatures

Impulse response - give the cloud a kick and see if the density responds

Experimental signatures

Measuring the charge gap U

Experimental signatures

Measuring the charge gap U
Greiner, et al. Nature 2002

Experimental signatures

Measuring the charge gap U
a) 1 D

Esslinger group, 2003
modulated lattice depth:
~Bragg spectroscopy

Experimental signatures

Imaging the Mott shells
Fölling, et al. 2006

Experimental signatures

Imaging the Mott shells

Fölling, et al. 2006

Local addressing + spin-changing collisions

Experimental signatures

Imaging the Mott shells

Campbell, et al. 2006

Fig. 3. Imaging the shell structure of the MI. (A) Spectrum of the MI at $V=$ $35 E_{\text {rec }}$. (B) Absorption images for for decreasing rf frequencies. Images a to e were taken on resonance with the peaks shown in (A) and display the spatial distribution of the $n=1$ to $n=5$ shells. The solid lines shows the predicted contours of the shells. Absorption images taken for rf frequencies between the peaks (images i to iv) show a much smaller signal. The field of view was $185 \mu \mathrm{~m}$ by $80 \mu \mathrm{~m}$.

Experimental signatures

Imaging the Mott shells
Gemelke, et al. 2009

Experimental signatures

Imaging the Mott shells

Experimental signatures

Imaging the Mott shells
Greiner group \& Bloch group, et al. 2010

Two-component Fermi Hubbard model

Let's focus on main two terms, in simplest case: spin-independent hopping and on-site interaction

$$
H=-t \sum_{n, \sigma}\left(\hat{c}_{\sigma, n+1}^{\dagger} \hat{c}_{\sigma, n}+\hat{c}_{\sigma, n}^{\dagger} \hat{c}_{\sigma, n+1}\right)+U \sum_{j} \hat{n}_{j}^{\uparrow} \hat{n}_{j}^{\downarrow}
$$

Phase diagram for fixed T at half filling (\# of particles = \# of sites, but 2 spin states)

Two-component Fermi Hubbard model

Even for weak interactions or a spin-polarized gas, sample becomes incompressible when all the states of the lowest energy band are filled (band insulator at unit occupancy)

$$
H=-t \sum_{n, \sigma}\left(\hat{c}_{\sigma, n+1}^{\dagger} \hat{c}_{\sigma, n}+\hat{c}_{\sigma, n}^{\dagger} \hat{c}_{\sigma, n+1}\right)+U \sum_{j} \hat{c}_{j}^{\dagger} \hat{n}_{j}^{\downarrow}
$$

Experimental signatures of Mott insulator

Counting "doublons" for fixed number and increasing interaction strength
Look for modification of compressibility

Jördens, et al. 2008

Schneider, et al. 2008

Experimental signatures of Mott insulator

Directly look for absence of doublons (holes in the middle)

Density gets "frozen," what then?

With U/t >> 1, density fluctuations are suppressed. But spins can still "hop" through second-order tunneling

$$
H=-t \sum_{n, \sigma}\left(\hat{c}_{\sigma, n+1}^{\dagger} \hat{c}_{\sigma, n}+\hat{c}_{\sigma, n}^{\dagger} \hat{c}_{\sigma, n+1}\right)+U \sum_{j} \hat{n}_{j}^{\uparrow} \hat{n}_{j}^{\downarrow}
$$

$$
H= \pm J \sum_{\langle i j\rangle} \vec{S}_{i} \cdot \vec{S}_{j}
$$

Attractive
Repulsive

$$
J=4 t^{2} / U
$$

[negative sign for fermions (AFM correlations), positive for bosons (FM correlations)]

$$
k_{B} T_{\text {Neel }} \sim J
$$

Density gets "frozen," what then?

With U/t >> 1, density fluctuations are suppressed. But spins can still "hop" through second-order tunneling

$$
H=-t \sum_{n, \sigma}\left(\hat{c}_{\sigma, n+1}^{\dagger} \hat{c}_{\sigma, n}+\hat{c}_{\sigma, n}^{\dagger} \hat{c}_{\sigma, n+1}\right)+U \sum_{j} \hat{n}_{j}^{\uparrow} \hat{n}_{j}^{\downarrow}
$$

$$
\begin{gathered}
H= \pm J \sum_{\langle i j\rangle} \vec{S}_{i} \cdot \vec{S}_{j}, \\
J=4 t^{2} / U
\end{gathered}
$$

[negative sign for fermions (AFM correlations), positive for bosons (FM correlations)]

$$
k_{B} T_{\text {Neel }} \sim J
$$

Note: bosons have spin exchange too, but positive sign

AFM ordering in Fermi-Hubbard gases

Signatures:
Doublon-production rate

g. 4. Nearest-neighbor antiferromagnetic order. (A) Transverse spin

Greif, et al. 2013

AFM ordering in Fermi-Hubbard gases

Signatures:
Doublon-production rate

Bragg scattering

Hart, et al. 2013

AFM ordering in Fermi-Hubbard gases

Signatures:
Doublon-production rate

Bragg scattering

Hart, et al. 2013

AFM ordering in Fermi-Hubbard gases

Signatures:
Doublon-production rate Bragg scattering
Build a microscope, and then just look at density of a single spin component

Mazurenko, et al. 2017

