Lecture 4: The alkalis

Readings: Foot Chapter 4

Last time: charge screening and energy structure in helium spin configurations in multi-electron atoms

This time: back to "'single"-electron atoms w/ the alkalis

- unpaired valence electrons
- due to screening from filled inner sub-shell structure, the relevant low-energy (eV-scale) excitations will all be of the valence electron

The alkalis

The alkalis

~ add one electron to the inert gases
quantum degeneracy (He, Ne, Ar, Kr, ...)
laser-cooling / trapping

$\begin{gathered} 11 \text { 1tam } \\ 3 \end{gathered}$
Li
6.941
$\begin{aligned} & \text { sodum } \\ & 11 \end{aligned}$
Na
2000
$\begin{gathered} \text { poctassium } \\ 19 \end{gathered}$
K
39, ${ }^{\text {asa }}$
$\begin{gathered} \text { nutuerm } \\ 37 \end{gathered}$
Rb
85468
$\begin{aligned} & \text { Cassum } \\ & 55 \end{aligned}$
Cs
13391
$\begin{aligned} & \text { Hancurn } \\ & \hline 87 \end{aligned}$
Fr
[23]

**Actinide series

$\begin{gathered} \substack{\text { Limmon } \\ \text { L7 } \\ \text { La }} \end{gathered}$		paseodymma\| 59 Pr	$\begin{gathered} \text { nodmam } \\ \mathrm{No} \\ \mathrm{Nd} \end{gathered}$		$\begin{aligned} & S_{62} \\ & \hline 2 \end{aligned}$	$\begin{gathered} \substack{\text { otrocoum } \\ 63 \\ \text { EU }} \end{gathered}$	$\mathrm{G}^{64} \mathrm{~d}$	$\begin{gathered} \text { cwinm } \\ 65 \\ \mathrm{~Tb} \end{gathered}$			Critim 68 Er	$\begin{gathered} \text { thaum } \\ 69 \\ T m \end{gathered}$	$\begin{aligned} & \text { yactaw } \\ & 70 \\ & \mathrm{Yb} \end{aligned}$
13891	14.12	140.91	14434	$[149$	150.36	151.96	15775	15893	16750	16.9	1en 26	16893	173
actilum	$\begin{gathered} \text { thocurn } \\ 90 \end{gathered}$	$\begin{aligned} & \text { proctacinum } \\ & 91 \end{aligned}$	Irandm 92	$\begin{aligned} & \text { nepturamin } \\ & 93 \end{aligned}$	$\begin{gathered} \text { plitconium } \\ 94 \end{gathered}$	$\begin{aligned} & \text { arnoricium } \\ & 95 \end{aligned}$	$\begin{gathered} \text { curum } \\ 96 \end{gathered}$	bencolum	$\begin{array}{\|c\|} \hline \text { Cifornurn } \\ 98 \end{array}$	$\begin{array}{\|c} \hline \text { crespinium } \\ 99 \end{array}$	$\begin{gathered} \text { Comiom } \\ 100 \end{gathered}$	mendolerium 101	$\begin{aligned} & \text { noblium } \\ & \hline 102 \end{aligned}$
Ac	Th	Pa	U	Np	Pu	Am	m	B	Cf	ES	Fm	Md	No
$127]$	283.04	231.4	maca	[237]	[14	1248	ps7	[24]	[251]	125	1257	129e	125

Screening in the alkalis

How do the electron's fill up?

\% $\begin{gathered}\text { mamm } \\ \text { Li } \\ \text { Li }\end{gathered}$
\% 11
Na
K
K
Rb
${ }^{55}$
Cs
\%
F

We saw that electron screening played a big role for He

Big jump in screening effects as you move up in n or l (big shift in distance of "next" electron from the nucleus)

Screening in the alkalis

How do the electron's fill up?

kT << eV, so electrons just fill lowest energy levels
$E_{2 s}=E_{2 p}$ for hydrogen (1/r potential, E_{n} ind. of l)
$V(r) \neq \beta / r$ for alkalis (screening, e-e interactions)

Screening in the alkalis

How do the electron's fill up?

Screening in the alkalis

How do the electron's fill up?

$$
1 s^{2} 2 s
$$

kT << eV, so electrons just fill lowest energy levels
$E_{2 s}=E_{2 p}$ for hydrogen (1/r potential, E_{n} ind. of l)
$V(r) \neq \beta / r$ for alkalis (screening, e-e interactions)

Screening in the alkalis

How do the electron's fill up?

$$
1 s^{2} 2 s
$$

kT << eV, so electrons just fill lowest energy levels
$E_{2 s}=E_{2 p}$ for hydrogen (1/r potential, E_{n} ind. of l)
$\mathrm{V}(\mathrm{r}) \neq \beta / \mathrm{r}$ for alkalis (screening, e-e interactions)

Screening in the alkalis

How do the electron's fill up?

$$
1 s^{2} 2 s
$$

kT << eV, so electrons just fill lowest energy levels
$E_{2 s}=E_{2 p}$ for hydrogen (1/r potential, E_{n} ind. of l)
$\mathrm{V}(\mathrm{r}) \neq \beta / \mathrm{r}$ for alkalis (screening, e-e interactions)

Screening in the alkalis

How do the electron's fill up?

$$
\begin{aligned}
& 1 s^{2} 2 s \\
& 1 s^{2} 2 s^{2} 2 p^{6} 3 s
\end{aligned}
$$

$\mathrm{kT} \ll \mathrm{eV}$, so electrons just fill lowest energy levels
$E_{2 s}=E_{2 p}$ for hydrogen (1/r potential, E_{n} ind. of l)
$\mathrm{V}(\mathrm{r}) \neq \beta / \mathrm{r}$ for alkalis (screening, e-e interactions)

Screening in the alkalis

How do the electron's fill up?

Lis	$1 s^{2} 2 \mathrm{~s}$
$\begin{aligned} & \text { mamm } \\ & \mathrm{Na} \end{aligned}$	$1 s^{2} 2 s^{2} 2 p^{6} 3 s$
	$1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 4 s$
$\begin{aligned} & \begin{array}{l} 468 \\ 55 \\ \text { 5s } \end{array} \end{aligned}$	
(en	

Note: 4s fill before 3d for potassium

Screening in the alkalis

How do the electron's fill up?

$$
\begin{aligned}
& 1 s^{2} 2 s \\
& 1 s^{2} 2 s^{2} 2 p^{6} 3 s \\
& 1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 4 s
\end{aligned}
$$

$1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 3 d^{10} 4 s^{2} 4 p^{6} 5 s$
$1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 3 d^{10} 4 s^{2} 4 p^{6} 4 d^{10} 5 s^{2} 5 p^{6} 6 s$
$1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 3 d^{10} 4 s^{2} 4 p^{6} 4 d^{10} 5 s^{2} 5 p^{6} 4 f^{14} 5 d^{10} 6 s^{2} 6 s^{6} 7 s$

Screening in the alkalis

Some general considerations

Lis	$1 s^{2} 2 \mathrm{~s}$
$\begin{aligned} & \begin{array}{l} 11 \\ \mathrm{Nam} \end{array} \text { an } \end{aligned}$	$1 s^{2} 2 s^{2} 2 p^{6} 3 s$
$\begin{aligned} & 37 \\ & R b \end{aligned}$	
$\begin{aligned} & \text { Estas } \\ & \text { c5 } \\ & \text { Cs } \end{aligned}$	

It's pretty easy to rip the valence electron away, these elements can be a bit hard to handle

Screening in the alkalis

Some general considerations

mam Li	$1 s^{2} 2 \mathrm{~s}$
Na	$1 s^{2} 2 s^{2} 2 p^{6} 3 s$
Rb R	
$\begin{aligned} & \frac{8,48}{s_{5}^{5}} \\ & \text { C5 } \end{aligned}$	

It's pretty easy to rip the valence electron away, these elements can be a bit hard to handle

Screening in the alkalis

Some general considerations

mam Li 1	$1 s^{2} 2 \mathrm{~s}$
	$1 s^{2} 2 s^{2} 2 p^{6} 3 s$
$\left\|\begin{array}{c} \frac{n m m}{\substack{n \times m a m}} \\ \mathrm{~K} \end{array}\right\|$	
(esme	

It's pretty easy to rip the valence electron away, these elements can be a bit hard to handle

Screening in the alkalis

Some general considerations

mam Li Li	$1 s^{2} 2 \mathrm{~s}$
$\begin{aligned} & \text { 211m } \\ & \mathrm{Na} \end{aligned}$	$1 s^{2} 2 s^{2} 2 p^{6} 3 s$
Cs	

Element	Z	IE (eV)
He	2	24.6
Li	3	5.4
Ne	10	21.6
Na	11	5.1
Ar	18	15.8
K	19	4.3
Kr	36	14.0
Rb	37	4.2
Xe	54	12.1
Cs	55	3.9

Screening in the alkalis

Some general considerations

$$
\begin{aligned}
& 1 s^{2} 2 s \\
& 1 s^{2} 2 s^{2} 2 p^{6} 3 s \\
& \\
& \\
& \\
& \\
& \\
& \\
& \text { Why not } 3 s \rightarrow 3 d ? \\
& \text { Whot } 3 s \rightarrow 4 s ?
\end{aligned}
$$

Element	Z	IE (eV)
He	2	24.6
Li	3	5.4
Ne	10	21.6
Na	11	5.1
Ar	18	15.8
K	19	4.3
Kr	36	14.0
Rb	37	${ }^{2} 12.1$
Xe	54	12.1
Cs	55	3.9

It'll cost wayyy more energy to excite inner-shell electrons than the valence electrons. We'll mostly just care about excitations like:
$\mathrm{Na}: \underline{1 s^{2} 2 s^{2} 2 p^{6}} 3 s \rightarrow \underline{1 s^{2} 2 s^{2} 2 p^{6}} 3 p, \underline{1 s^{2} 2 s^{2} 2 p^{6}} 4 p$, etc.

Quantum defects in the alkali metals

An empirical way to parameterize the effects of shielding

$$
E_{n l}=\frac{h c R_{\infty}}{\left(n-\delta_{l}\right)^{2}}=-\frac{13.6 \mathrm{eV}}{(n *)^{2}}
$$

Element	Z	$\mathrm{IE}(\mathrm{eV})$
He	2	24.6
Li	3	5.4
Ne	10	21.6
Na	11	5.1
Ar	18	15.8
K	19	4.3
Kr	36	14.0
Rb	37	4.2
Xe	54	12.1
Cs	55	3.9

Element	Configuration	n^{*}	δ_{s}	\mathbf{Z}
Li	2 s	1.59	0.41	3
Na	3 s	1.63	1.37	11
K	4 s	1.77	2.23	19
Rb	5 s	1.81	3.19	37
Cs	6 s	1.87	4.13	55

Pretty remarkable: all ionization energies (and transition energies) are roughly equal despite Z^{2} scaling of energies without shielding

Alkalis - wide range of physics to study

Consequently, transitions in a wide range of species (with very different Z values) can be addressed with roughly the same range of laser wavelengths (within a factor of <2)

Stable

isotopes	$\begin{gathered} 1 \text { 1them } \\ 3 \end{gathered}$
6,7 Li	Li
	6.941
	Sodum
${ }^{23} \mathrm{Na}$	11
	Na
	2 mo
	potassium
39,40,41K	K
	39 cma
	netidurn 37
$85,87 \mathrm{Rb}$	Rb
	85468
	cassium 55
${ }^{133} \mathrm{Cs}$	C_{5}
	13391
	trancum 87
${ }^{223} \mathrm{Fr}$	${ }^{87}$
(not really)	12

${ }^{7}$ Li BEC in 1997, ${ }^{6}$ Li DFG in 2001 - very light, very broad Feshbach resonances for both the bosonic and fermionic species
${ }^{23} \mathrm{Na}$ BEC in 1995 - stable scattering properties, stable mixtures used to explore spinor physics
${ }^{40} \mathrm{~K}$ DFG in 1999, ${ }^{39,41} \mathrm{~K}$ BECs in early 2000s - fermions, broad feshbach resonances,
${ }^{87} \mathrm{Rb}$ BEC in 1995; ${ }^{87} \mathrm{Rb}$ has stable scattering properties, nice Feshbach resonances in ${ }^{85} \mathrm{Rb}$; large spin-orbit splitting allows for state-dependent potentials / Raman-dressing schemes
BEC in 2002 ; nice Feshbach resonances, mostly unstable in spin mixtures and mixtures with other species

Laser cooling and magneto-optical trapping for parity nonconservation studies
note that the mass number $\mathrm{A}=\mathrm{Z}+\mathrm{N}$ is written as, e.g., ${ }^{87} \mathrm{Rb}$ for the rubidium isotope with $\mathrm{A}=87$. (atomic number $\mathrm{Z}=\#$ of protons) $+(\mathrm{N}=\#$ of neutrons).
An odd value of A implies a fermionic isotope for the alkalis (1 "extra" valence electron).

Quantum defect for different orbitals

(b)

(c)

Table 9.2 Parameters of the energy levels of the alkalis. $E_{n l}=\frac{h c R_{\infty}}{\left(n-\delta_{l}\right)^{2}}=-\frac{13.6 \mathrm{eV}}{\left(n^{*}\right)^{2}}$
(a) quantum defects δ_{l}

Atom	$I=$	$0(s)$	$1(p)$	$2(d)$	$3(f)$
Li		0.40	0.04	0.00	0.00
Na	1.35	0.85	0.01	0.00	
K	2.19	1.71	0.25	0.00	
Rb	3.13	2.66	1.34	0.01	
Cs	4.06	3.59	2.46	0.02	

Cs: $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 3 d^{10} 4 s^{2} 4 p^{6} 4 d^{10} 5 s^{2} 5 p^{6} 6 s$

Quantum defects in the alkali metals

Transition energies (wavelengths)

Recall $E_{2 p}-E_{1 s} \sim 10.2 \mathrm{eV}$ for hydrogen, relating to $\lambda_{1 \rightarrow 2} \sim 120 \mathrm{~nm}$ $h c=1240 \mathrm{eV} \mathrm{nm}$
>> Estimate the wavelength related to the $\mathrm{Na} 3 \mathrm{~s} \rightarrow 4 \mathrm{p}$ transition

>> Is this the longest wavelength that can be used to excite g.s. sodium?

Quantum defects in the alkali metals

Solving the many-electron atom

Everything so far has been super empirical, results of experiment
How do you actually tackle the problem for a many-electron atom?

$$
H=\sum_{i}\left[-\frac{\hbar^{2}}{2 m} \vec{\nabla}_{i}^{2}-\frac{Z e^{2}}{4 \pi \varepsilon_{0} r_{i}}\right]+\sum_{i \neq j} \frac{e^{2}}{4 \pi \varepsilon_{0} r_{i j}}
$$

- no analytical solution to this problem
- we'll walk through one approximate way to treat the effect of many core electrons

Central-field approximation

$$
\begin{aligned}
& H=\sum_{i}\left[-\frac{\hbar^{2}}{2 m} \vec{\nabla}_{i}^{2}-\frac{Z e^{2}}{4 \pi \varepsilon_{0} r_{i}}\right]+\sum_{i \neq j} \frac{e^{2}}{4 \pi \varepsilon_{0} r_{i j}} \\
& \Rightarrow H \approx H_{C F}=\sum_{i=1}^{N}\left[-\frac{\hbar^{2}}{2 m} \vec{\nabla}_{i}^{2}+V_{C F}\left(r_{i}\right)\right]
\end{aligned}
$$

One a V_{CF} is assumed, this problem breaks down into N independent singleparticle Schrödinger equations.

For the N solutions (lowest energy eigenstate wave functions), the total wave function will be of the form

$$
\psi_{\text {TOT }}=\psi_{1} \psi_{2} \psi_{3} \ldots \psi_{N}
$$

or rather a properly symmetrized version of this (this text goes into more details on the use of Slater determinants to ensure proper w.f. antisymmetrization)

Central-field approximation

$$
\begin{aligned}
& H=\sum_{i}\left[-\frac{\hbar^{2}}{2 m} \stackrel{\nabla}{\nabla}_{i}^{2}-\frac{Z e^{2}}{4 \pi \varepsilon_{0} r_{i}}\right]+\sum_{i \neq j} \frac{e^{2}}{4 \pi \varepsilon_{0} r_{i j}} \\
& \Rightarrow H \approx H_{C F}=\sum_{i=1}^{N}\left[-\frac{\hbar^{2}}{2 m} \vec{\nabla}_{i}^{2}+V_{C F}\left(r_{i}\right)\right]
\end{aligned}
$$

$\mathrm{V}_{\mathrm{CF}}(\mathrm{r}) \rightarrow$ an effective, spherically symmetric potential that captures
(1) the static Coulomb potential of the nucleus and
(2) an effectively static, spherically symmetric potential due to the total electron charge distribution (for product states ψ this gives a Hartree term like in the He treatment)
$>$ no longer $1 / r$ potential, so E depends on l
> still spherically symmetric, so E independent of m_{l}

Central-field approximation

$$
H \approx H_{C F}=\sum_{i=1}^{N}\left[-\frac{\hbar^{2}}{2 m} \vec{\nabla}_{i}^{2}+V_{C F}\left(r_{i}\right)\right]
$$

Basically, an effective electric field $\quad \vec{E}_{C F}(r)=\frac{Z_{\text {eff }}(r) e}{4 \pi \varepsilon_{0} r^{2}} \hat{r} \quad$ exists, of the form

and an electron at distance r will experience the potential

$$
V_{C F}(r)=-e \int_{r}^{\infty} E_{C F}\left(r^{\prime}\right) d r^{\prime}
$$

Central-field approximation

$$
V_{C F}(r)=-e \int_{r}^{\infty} E_{C F}\left(r^{\prime}\right) d r^{\prime}
$$

The effect of the centrifugal barrier can also be incorporated for $l \neq 0$ solutions

Solving the many-electron atom

In broad strokes, the basic procedure for obtaining solutions to this problem would look like:

1) Make an initial guess at ψ and $V_{C F}$
2) Solve the N Schrodinger equations (for N electrons), respecting the necessary antisymmetric nature of ψ
3) From the new ψ, get a new $V_{C F}$
4) Iterate

Note: experiments still do the best job at determining state energies (energy differences), up to a part in 10^{18} in some cases

Fine structure in the alkalis

An important result that comes from the central-field approximation

Recall from lecture 2 (hydrogen-like atoms with a $1 / r$ potential), that the fine-structure splitting between states with $j=l+1 / 2$ and $j=l-1 / 2$ have the form

$$
\Delta E_{s-o}=\frac{Z^{2} \alpha^{2}}{n l(l+1)} E_{\text {gross }}(n)=\frac{Z^{4} \alpha^{4}}{n^{3} l(l+1)} m c^{2}
$$

For the multi-electron atom, which does not follow a $1 / r$ potential, and where $Z_{\text {eff }}$ varies from Z to 1 as a function of r, this takes the modified form (the Landé formula):

Fine structure in the alkalis

See how well this scaling works $\quad \Delta E_{s-o} \propto Z^{2}$

$$
\Delta E_{s-o} / h
$$

Li $\quad 10.056 \mathrm{GHz}$
$\mathrm{Na} \quad 516$ GHz
K $\quad 1730 \mathrm{GHz}$
Rb $\quad 7123 \mathrm{GHz}$
Cs $\quad 16,610 \mathrm{GHz}$
Fr $\quad 50,562 \mathrm{GHz}$

Frequency splitting between
"D1" and "D2" lines

What can this splitting be good for?

LeBlanc

Control of polarizability by tuning between D1 and D2 optical transitions

Katori, Ye

Why this splitting matters?

Chin

Fine structure in the alkalis

See how well this scaling works $\quad \Delta E_{s-o} \propto Z^{2}$

