$$
H=H_{h f s}+H_{B}=h A_{h f s} \frac{\vec{I} \cdot \vec{J}}{\hbar^{2}}+\frac{\mu_{B}}{\hbar}\left(g_{J} J+g_{I} I\right) B_{z}
$$

(a) [3 pts] In general, finding the eigenstates and energies in this system requires a numerical solution (diagonalization of this Hamiltonian). However, we stated in class that for states with J = $1 / 2$, as in the $\mathrm{S}_{1 / 2}$ ground states of hydrogen and the alkalis, the energies can be described by the Breit-Rabi formula

$$
E=-\frac{\Delta E_{h f}}{4 F^{+}}-g_{I} m \mu_{B} B_{z} \pm \frac{\Delta E_{h f s}}{2} \sqrt{1+\frac{4 m x}{2 F^{+}}+x^{2}}
$$

Here, $F^{+}=(I+1 / 2), \frac{\Delta E_{h f s}}{h}=A_{h f s} F^{+}, m=m_{I} \pm m_{J}$ is the z component of the total angular momentum, and the term x is given by $\left.x=(g)+g_{I}\right) \mu_{B} B_{z} / \Delta E_{h f s}$.
Show that the state energies follow this Breit-Rabi formula for a general field value B_{z}.

L7: 2-level systems \& classical resonance

Foot 1.6, 1.8

Examples of "2-level" systems

- \quad spin-1/2 particle (electron/proton spin)
- (pseudo)spin-1/2 particle (hyperfine, etc.)

L7: 2-level systems \& classical resonance

Foot 1.6, 1.8

Examples of "2-level" systems

- spin-1/2 particle (electron/proton spin)
- (pseudo)spin-1/2 particle (hyperfine, etc.)
- optical excitations

Fig. S6. Narrow-line Rabi spectroscopy. Rabi spectroscopy data for a $4 \mathrm{~s} \pi$-pulse time, showing a $190(20) \mathrm{mHz}$ Fourier-limited linewidth, taken with $m_{F}=9 / 2$ and rescaled by the relative spin population.

L7: 2-level systems \& classical resonance

Foot 1.6, 1.8

Examples of "2-level" systems

- spin-1/2 particle (electron/proton spin)
- (pseudo)spin-1/2 particle (hyperfine, etc.)
- optical excitations
- energy state of anharmonic oscillator
- rot/vib states of molecules
- etc.

L7: 2-level systems \& classical resonance

Foot 1.6, 1.8

Examples of "2-level" systems

- \quad spin- $1 / 2$ particle (electron/proton spin)
- (pseudo)spin-1/2 particle (hyperfine, etc.)
- optical excitations
- energy state of anharmonic oscillator
- rot/vib states of molecules
- etc.
- double-well site index

L7: 2-level systems \& classical resonance

Foot 1.6, 1.8

Examples of "2-level" systems

- spin-1/2 particle (electron/proton spin)
- (pseudo)spin-1/2 particle (hyperfine, etc.)
- optical excitations
- energy state of anharmonic oscillator
- rot/vib states of molecules
- etc.
- double-well site index
- interferometer path
- photon polarization / other d.o.f.
- states of a macroscopic object
- field occupation number
- etc.

Ignoring intricacies, all these 2-level systems are described by a similar formalism

Let's review some basic terminology

Field purely along z

$$
\stackrel{\rightharpoonup}{B}=B_{0} \hat{z}
$$

spin in $x-y$ plane

Field purely along z

$$
\stackrel{\rightharpoonup}{B}=B_{0} \hat{z}
$$

spin along z-axis

General Larmor precession

$$
\vec{B}=B_{0} \hat{Z}
$$

Field purely along x

$$
\vec{B}=B_{\perp} \hat{x}
$$

spin along z-axis

What would the dynamics look like if our spin was initially pointed along x ?

Weak transverse field

How can we get the spin to keep going towards the "south pole," i.e. -z?

Open response: 5 points towards HW\#2

Inverting the field in coordination with the precession

$$
\vec{B}=B_{0} \hat{z}+B_{\perp}(t) \hat{x}
$$

$$
B_{0}=10 B_{\perp}
$$

Field oscillating at the Larmor frequency

$$
\vec{B}=B_{0} \hat{z}+B_{\perp} \cos \left(\mu B_{0} t / \hbar\right) \hat{x}
$$

$$
B_{0}=10 B_{\perp}
$$

many other ways as well...

