L8: 2-level systems – Rabi & Ramsey methods

How can we get the spin to keep going towards the "south pole," i.e. -z?

Follow up to last class:

Suggested method -- slowly sweep the field direction

Rabi dynamics

 $\delta = 0$ $\delta = \Omega$

Let's look as a function of detuning at this " π -pulse" time

 $\delta = 5\Omega$

Detuning dependence

 π

t*

sinc² dependence Fourier-broadened lineshape due to finite pulse duration

Detuning dependence

Detuning dependence

sinc² dependence Longer π -pulse gives smaller Fourier width

 $\Delta f \Delta t \sim 1$

 π

*

Pulse-shaping

peak Rabi rate Ω , for fixed π -pulse area

Blackman pulse [like a Gaussian, but defined over finite time window]

Pulse-shaping

Blackman pulse [like a Gaussian, but defined over finite time window]

the cesium fountain clock

aser ΔE determines the SI second (and meter) $\Delta E \propto 1/\Delta t$ F = 4133Cs $g_{\rm F} = 1/4$ (0.35 MHz/G) 4.021 776 399 375 GHz (exact) Microwave $6^{2}S_{1/2}$ Cavity Probe 9.192 631 770 GHz (exact) Laser Detector 5.170 855 370 625 GHz (exact) aser F = 3Lase $g_{\rm c} = -1/4$ (-0.35 MHz/G)

For many experiments, long interaction time = large region of space

Hard to keep microwaves/laser (Ω) and external fields constant over large region of space

Ramsey signal

More complex procedures

More complex procedures

From

Noise spectroscopy through dynamical decoupling with a superconducting flux qubit

Jonas Bylander, Simon Gustavsson, Fei Yan, Fumiki Yoshihara, Khalil Harrabi, George Fitch, David G. Cory, Yasunobu Nakamura, Jaw-Shen Tsai & William D. Oliver

Nature Physics 7, 565-570 (2011) | doi:10.1038/nphys1994

Received 25 February 2011 | Accepted 04 April 2011 | Published online 08 May 2011

More complex procedures

WAHUHA

