L8: 2-level systems - Rabi \& Ramsey methods

How can we get the spin to keep going towards the "south pole," i.e. -z?

Follow up to last class:
Suggested method -- slowly sweep the field direction

Rabi dynamics

$$
\begin{aligned}
P(t) & =\left|\frac{\Omega}{\Omega^{\prime}}\right|^{2} \sin ^{2}\left(\Omega^{\prime} t / 2\right) \\
\Omega^{\prime} & =\sqrt{\Omega^{2}+(\delta / 2)^{2}}
\end{aligned}
$$

$$
\begin{aligned}
& \delta=0 \\
& \delta=\Omega
\end{aligned}
$$

$$
\begin{aligned}
& \text { Rabi dynamics } t^{t^{*}=\frac{\pi}{2 \Omega}} \\
& P(t)=\left|\frac{\Omega}{\Omega^{\prime}}\right|^{2} \sin ^{2}\left(\Omega^{\prime} t / 2\right) \\
& \\
& \Omega^{\prime}=\sqrt{\Omega^{2}+(\delta / 2)^{2}} \\
&
\end{aligned}
$$

Detuning dependence

$$
t^{*}=\frac{\pi}{2 \Omega}
$$

sinc^{2} dependence
Fourier-broadened lineshape due to finite pulse duration

Detuning dependence

$$
t^{*}=5 \frac{\pi}{2 \Omega}
$$

Detuning dependence

$$
t_{1,2}^{*}=\frac{\pi}{2 \Omega_{1,2}}
$$

sinc^{2} dependence
Longer π-pulse gives smaller Fourier width $\quad \Delta f \Delta t \sim 1$

Pulse-shaping

peak Rabi rate Ω, for fixed π-pulse area

Blackman pulse [like a Gaussian, but defined over finite time window]

Pulse-shaping

Blackman pulse [like a Gaussian, but defined over finite time window]

the cesium fountain clock

$\Delta \mathrm{E}$ determines the SI second (and meter) $\Delta E \propto 1 / \Delta t$

For many experiments,
long interaction time = large region of space
Hard to keep microwaves/laser (Ω) and external fields constant over large region of space

Ramsey signal

More complex procedures

Spin-echo (refocusing pulses)

CP/CPMG

More complex procedures

From

Noise spectroscopy through dynamical decoupling with a superconducting flux qubit
Jonas Bylander, Simon Gustavsson, Fei Yan, Fumiki Yoshihara, Khalil Harrabi, George Fitch, David G. Cory, Yasunobu Nakamura, Jaw-
Shen Tsai \& William D. Oliver
Nature Physics 7, 565-570 (2011) | doi:10.1038/nphys1994
Received 25 February 2011 | Accepted 04 April 2011 | Published online 08 May 2011

More complex procedures

WAHUHA

