PHYS 598 AQG HW4

Dmytro Bandak

1. Q1 Foot 7.5 [3 pts]
(a) Attenuation of intensity of a weak beam is described by:

$$
\begin{gather*}
\frac{d I}{d z}=-N \sigma(\omega) I \Rightarrow I=I_{0} e^{-N \sigma z} \tag{1}\\
\sigma(\omega)=\frac{g_{2}}{g_{1}} \frac{\pi^{2} c^{2}}{\omega_{0}^{2}} A_{21} g_{H}(\omega) \tag{2}\\
g_{H}=\frac{1}{2 \pi} \frac{\Gamma}{\left(\omega-\omega_{0}\right)^{2}+\Gamma^{2} / 4} \tag{3}
\end{gather*}
$$

For a resonant beam $\omega=\omega_{0}$:

$$
\begin{equation*}
g_{H}(\omega)=\frac{2}{\pi \Gamma} \tag{4}
\end{equation*}
$$

and the two-level process implies:

$$
\begin{gather*}
\Gamma=A_{21} \tag{5}\\
\sigma\left(\omega_{0}\right)=\frac{6}{\pi} \frac{\pi^{2} c^{2}}{\omega_{0}^{2}}=\frac{3}{2} \frac{\lambda_{0}^{2}}{\pi} \tag{6}
\end{gather*}
$$

To provide the transmission of e^{-1} :

$$
\begin{equation*}
N \sigma(\omega) z=1 \Rightarrow N=\frac{2}{3} \frac{\pi}{z \lambda_{0}^{2}} \tag{7}
\end{equation*}
$$

And the number of atoms:

$$
\begin{equation*}
\mathcal{N}=V N=3.16 \cdot 10^{6} \tag{8}
\end{equation*}
$$

(b) The absorption coefficient is given by:

$$
\begin{equation*}
\kappa(\omega, I)=\frac{N \sigma(\omega)}{1+I / I_{\text {sat }}(\omega)} \tag{9}
\end{equation*}
$$

Setting $I=I_{s a t}$:

$$
\begin{equation*}
\kappa(\omega, I)=\frac{N \sigma(\omega)}{2}=500 \frac{1}{\mathrm{~m}} \tag{10}
\end{equation*}
$$

and thus the absorption is equal to $1-e^{-0.5}=0.39$.
2. Q2 Foot 7.6 [3 pts]
(a) Selection rule for electric dipole transitions: $\Delta l= \pm 1$

(b) The lifetime is given by $\tau=1 / \sum_{i} A_{21}^{i}$, where the sum runs over all the processes that lead to the final state.

$$
\begin{gather*}
\tau_{3 s}=\frac{1}{6.3 \cdot 10^{6}}=158.7 \mathrm{~ns} \tag{11}\\
\tau_{3 p}=\frac{1}{1.7 \cdot 10^{8}+2.2 \cdot 10^{7}}=5.21 \mathrm{~ns} \tag{12}\\
\tau_{3 d}=\frac{1}{6.5 \cdot 10^{7}}=15.38 \mathrm{~ns} \tag{13}
\end{gather*}
$$

The fraction of atoms that start in the 3 p and end up in the 2 s configuration is:

$$
\begin{equation*}
\frac{A_{21}^{2 \mathrm{~s} \rightarrow 3 \mathrm{p}}}{A_{21}^{2 \mathrm{~s} \rightarrow 3 \mathrm{p}}+A_{21}^{1 \mathrm{~s} \rightarrow 3 \mathrm{p}}}=0.115 \tag{14}
\end{equation*}
$$

(c)

$$
\begin{equation*}
\left.\tau=1 / \sum_{i} A_{21}^{i}, \text { and } A_{21} \propto\left|D_{12}\right|^{2} \propto|\langle 2| r| 1\right\rangle\left.\right|^{2} \tag{15}
\end{equation*}
$$

3 p has two modes of decay, while 2 p has only one, but if $A_{21}^{2 \mathrm{~s} \rightarrow 3 \mathrm{p}}+A_{21}^{1 \mathrm{~s} \rightarrow 3 \mathrm{p}}<A_{21}^{1 \mathrm{~s} \rightarrow 2 \mathrm{p}}$, the lifetime for 2 p configuration is still shorter. This is possible due to larger overlap of 2 p with 1 s wavefunctions in comparison to overlaps of the 3 p with 2 s and 3 p with 1 s wavefunctions. This is consistent with the fact that orbitals with higher main quantum number predominantly reside further from the nucleus.
(d) We can calculate the dipole matrix elements from the corresponding A_{21} :

$$
\begin{gather*}
\left|D_{21}\right|^{2}=\frac{g_{2}}{g_{1}} \frac{3 c^{2}}{\alpha} \frac{1}{\omega_{21}^{3}} A_{21} \tag{16}\\
\frac{g_{2}}{g_{1}}=\frac{2 l_{2}+1}{2 l_{1}+1}, \text { and } \omega_{21}=2 \pi c R_{\infty}\left(\frac{1}{n_{2}^{2}}-\frac{1}{n_{1}^{2}}\right) \tag{17}
\end{gather*}
$$

We thus arrive at:

$$
\begin{align*}
& \left|D_{12}^{1 \mathrm{~s} \rightarrow 2 \mathrm{p}}\right|=1.29 a_{0} \tag{18}\\
& \left|D_{12}^{1 \mathrm{~s} \rightarrow 3 \mathrm{p}}\right|=0.52 a_{0} \tag{19}\\
& \left|D_{12}^{2 \mathrm{~s} \rightarrow 3 \mathrm{p}}\right|=3.03 a_{0} \tag{20}\\
& \left|D_{12}^{2 \mathrm{p} \rightarrow 3 \mathrm{~s}}\right|=0.54 a_{0} \tag{21}\\
& \left|D_{12}^{2 \mathrm{p} \rightarrow 3 \mathrm{~d}}\right|=3.89 a_{0} \tag{22}
\end{align*}
$$

(e) Saturation intensity is given by:

$$
\begin{equation*}
I_{s a t}=\frac{\pi h c}{3 \lambda^{3} \tau}=\frac{\pi h c A_{21}}{3 \lambda^{3}} \tag{23}
\end{equation*}
$$

which we can calculate to be:

$$
\begin{gather*}
I_{s a t}^{2 \mathrm{p} \rightarrow 3 \mathrm{~s}}=4.64 \mathrm{~W} / \mathrm{m}^{2} \tag{24}\\
I_{\text {sat }}^{1 \mathrm{~s} \rightarrow 3 \mathrm{p}}=3.28 \cdot 10^{4} \mathrm{~W} / \mathrm{m}^{2} \tag{25}
\end{gather*}
$$

(f) Q3 Foot 7.9 [1 pt]

First, without taking into account the Doppler shift, population in the excited state is:

$$
\begin{equation*}
\left|c_{2}(t)\right|^{2}=\left|\Omega \frac{\sin \left(\left(\omega_{0}-\omega\right) t / 2\right)}{\omega_{0}-\omega}\right|^{2} \tag{26}
\end{equation*}
$$

Now taking into account the Doppler shift $\left(\omega_{0}-\omega \rightarrow \omega_{0}-\omega+k v\right)$ and Maxwell-Boltzmann distribution of velocities:

$$
\begin{equation*}
f(v)=\frac{1}{u \pi} e^{-v^{2} / u^{2}}, u=\sqrt{2 k_{b} T / M} \tag{27}
\end{equation*}
$$

we arrive at the expression:

$$
\begin{align*}
\left|c_{2}(t)\right|^{2}=\frac{e^{2} \chi_{12}^{2}}{\hbar^{2}}|E(\omega)|^{2} \int_{-\infty}^{\infty} d v \frac{\sin ^{2}\left(\left(\omega-\omega_{0}+k v\right) t / 2\right)}{\left(\omega-\omega_{0}+k v\right)^{2}} f(v) \tag{28}\\
\left|c_{2}(t)\right|^{2}=\Omega^{2} \int_{-\infty}^{\infty} d v f(v) \frac{\sin ^{2}\left(\left(\omega-\omega_{0}+k v\right) t / 2\right)}{\left(\omega-\omega_{0}+k v\right)^{2}}= \\
=\frac{e^{2} \chi_{12}^{2}}{\hbar^{2}}|E(\omega)|^{2} \int_{-\infty}^{\infty} d v f(v) \frac{\sin ^{2}\left(\left(\omega-\omega_{0}+k v\right) t / 2\right)}{\left(\omega-\omega_{0}+k v\right)^{2}} \tag{29}
\end{align*}
$$

Performing a change of variable to $x=\left(\omega_{0}-\omega+k v\right) t / 2$ and approximating the function $\operatorname{sinc}^{2}(x)$ by $\delta(x)$:

$$
\begin{gather*}
\left|c_{2}(t)\right|^{2}=\frac{e^{2} \chi_{12}^{2}|E(\omega)|^{2} t}{2 \hbar^{2} k} f\left(\frac{\omega-\omega_{0}}{k}\right) \tag{30}\\
\left|c_{2}(t)\right|^{2}=\frac{e^{2} \chi_{12}^{2}|E(\omega)|^{2} t c}{2 \hbar^{2} u \omega_{0} \sqrt{\pi}} e^{-c^{2}\left(\omega-\omega_{0}\right)^{2} / u^{2} \omega^{2}} \propto g_{D}(\omega) \tag{31}
\end{gather*}
$$

as we set out to show.
3. Q4 Foot 7.12 [2.5+0.5 pts]
(a)

$$
\begin{equation*}
H=H_{0}+H^{\prime}=H_{0}+e \vec{E} \cdot \vec{r} \tag{32}
\end{equation*}
$$

In the matrix form:

$$
H_{0}=\left[\begin{array}{cc}
E_{2}-\frac{E_{2}+E_{2}}{2} & 0 \tag{33}\\
0 & E_{1}-\frac{E_{1}+E_{2}}{2}
\end{array}\right]=\left[\begin{array}{cc}
\frac{E_{2}-E_{1}}{2} & 0 \\
0 & \frac{E_{1}-E_{2}}{2}
\end{array}\right]=\left[\begin{array}{cc}
\frac{\epsilon}{2} & 0 \\
0 & -\frac{\epsilon}{2}
\end{array}\right]
$$

and the perturbation matrix elements are:

$$
\begin{gather*}
H_{11}^{\prime}=e \vec{E} \cdot\langle 1| \vec{r}|1\rangle=0 \tag{34}\\
H_{22}^{\prime}=e \vec{E} \cdot\langle 2| \vec{r}|2\rangle=0 \tag{35}\\
H_{12}^{\prime}=e \vec{E} \cdot\langle 1| \vec{r}|2\rangle=e \vec{E} \cdot\langle 2| \vec{r}|1\rangle=H_{21}^{\prime}=V \tag{36}
\end{gather*}
$$

Thus the total Hamiltonian:

$$
H_{0}=\left[\begin{array}{cc}
\frac{\epsilon}{2} & V \tag{37}\\
V & -\frac{\epsilon}{2}
\end{array}\right]
$$

and the eigenvalues are:

$$
\begin{equation*}
E_{2 / 1}= \pm \sqrt{\epsilon^{2} / 4+V^{2}} \tag{38}
\end{equation*}
$$

(b)

$$
\begin{equation*}
E_{1}=\sqrt{\epsilon^{2} / 4+V^{2}}=-\frac{\epsilon}{2} \sqrt{1+\frac{4 V^{2}}{\epsilon^{2}}} \simeq-\frac{\epsilon}{2}-\frac{V^{2}}{\epsilon} \tag{39}
\end{equation*}
$$

and thus the Stark shift for weak field is equal to:

$$
\begin{equation*}
\Delta E_{1}=-\frac{V^{2}}{\epsilon}=-\frac{\left.\left|\langle 1| H^{\prime}\right| 2\right\rangle\left.\right|^{2}}{E_{2}-E_{1}} \tag{40}
\end{equation*}
$$

(c) "Sodium D Line Data" by Daniel A. Steck: the dipole matrix element for the transition 3s $\rightarrow 3 \mathrm{p}$ is equal to $3.52 a_{0}$ and the energy of this transition is $\epsilon=2.104 \mathrm{eV}$. We can thus calculate the Stark shift:

$$
\begin{equation*}
\Delta E=-\frac{V^{2}}{\epsilon}=-\frac{\left(10^{6} \mathrm{~V} / \mathrm{m} \cdot 3.52 e a_{0}\right)^{2}}{2.104 \mathrm{eV}}=-1.66 \cdot 10^{-8} \mathrm{eV} \tag{41}
\end{equation*}
$$

(d) In the first order perturbation theory the correction to the ground state is:

$$
\begin{equation*}
|1\rangle^{(1)}=e E \frac{\langle 2| z|1\rangle}{E_{1}-E_{2}}|2\rangle^{(0)}=8.9 \cdot 10^{-5}|2\rangle^{(0)} \tag{42}
\end{equation*}
$$

Thus the percentage of excited state character mixed into the ground state is $100 \% \cdot\left(8.9 \cdot 10^{-5}\right)^{2}=$ $7.9 \cdot 10^{-7} \%$ 。

