PHYS598 AQG, Fall 2017

Homework Set \#1, due by 4:30 pm on Friday 9/8

Q1) [1 pts] Foot 2.4 - penetration of the electron wave function into the nucleus

Q2) [3.5 total pts] Effects of penetration (from Q1) and finite size of the proton

Assume that the proton can be described as a sphere of radius r_{p} having uniform charge density ρ_{p}, where $\rho(\mathrm{r})=\rho_{\mathrm{p}}$ for $\mathrm{r}<\mathrm{r}_{\mathrm{p}}$, and 0 outside.
a) $[0.75 \mathrm{pts}]$ Derive the electric potential $\mathrm{V}_{\mathrm{p}}(\mathrm{r})$ due to this proton charge distribution
b) [1.75 pts] Let's assume that the proton has a radius of 1 fm . Use first order perturbation theory and this modified potential to estimate the shift in energy of the hydrogen 1 s state (as compared to a point-like proton charge).
c) [1 pts] Perform a similar calculation as in (b) for the 2 s state. Now consider measurement of the hydrogen 1 s - 2 s transition energy. What fractional accuracy would be necessary to allow one to discern a 1% variation in the proton radius (1.00 fm to 1.01 fm)?

Note: Foot Tables 2.1 and 2.2 can be used to determine the 1 s and 2 s wave functions.

Q3) [2.5 total pts] Helium ground state
a) $[1 \mathrm{pt}]$ Foot 3.5 a
b) [1.5 pts] Adding this positive interaction energy between electrons in the $1 \mathrm{~s}^{2}$ configuration to the "non-interacting" ground state energy of -109 eV yields a revised estimate of -75 eV for the ground state of helium. This is still quite a bit off from the measured ground state energy of -79 eV (see discussion on Foot page 46).

This simple estimate assumes that the 1 s wave functions are not modified by the Coulomb repulsion between the two electrons. A better estimate of the ground state energy may be gained through a variational approach, where one assumes that the atomic number Z is effectively modified by the electron-electron interactions, taking a value Z^{\prime}.

Use this variational approach, i.e. plugging a modified value atomic number Z^{\prime} into the form of the 1 s wave functions, and find the value of Z^{\prime} that minimizes the ground state energy, and this minimum energy value.

Q4) [1 pt] Foot 4.3 - quantum defect

Q5) [1 pt] Foot 4.4 - quantum defect

Q6) [1 pt] Foot 4.7 - fine structure \& quantum defect

