Lecture 1 Welcome to Phys 598 ETC
Goals for the cowsei. Develop theoretical bargain for research on topolegyca/rataten

- Understad modern developertsin the theory of maninterathy elections
- Develop a faun dat on for undestady group theory a solid State phyors

Guide to topics (1) Space group symmetries
(2) Wannier furctions and Band represectations
(3) Bersy phases and Band toodogy
(4) Topological crystalline insulators
course website: courses. physics.illinors edy/piys $598 g+c$
Cousce comporents Lectures
HWs (~ 6)
Final Presectations

Hus graded primarily on completion rather than correctness

Office Hours: Mondays

via Zoom link on course website.
I) Review/Refresher/Intro to Group Theory

Useful resources; - Dresselhans, "Apdicatiar of Group Thy to Physic of Solder"

- Bradley \& Cracknel "Matheratioal Thy of Surety in Solids
- Serre "Linear Represectatias of Eirte Greups ${ }^{1 /}$

Startiy point: $H=\frac{\rho^{2}}{2 m}+V(\vec{x})+\ldots$

$$
\begin{aligned}
& \quad H|\psi\rangle=E|\psi\rangle \\
& x \rightarrow x^{\prime} \\
& \rho \rightarrow p^{\prime} \\
& |\psi\rangle \rightarrow\left|\psi^{\prime}\right\rangle
\end{aligned}
$$

In this course, we will be interested in transformations

$$
\begin{array}{ll}
\vec{x}^{\prime}=R \vec{x}+\vec{d} & R \text { is } 3 \times 3 \text { matrix } \\
\vec{\rho}^{\prime}=R \vec{p} & R^{\top}=R^{-1}
\end{array}
$$

Intuilre facts: (1) If I have two transformations, I can first do are then the other this is also a transformation
(2) I can always undo a trossforation and thater also a trantamation
(3) I can always, ob a transformation that does absolutely nothry

Definition a set G is a group if:
(1) themes a binary operation. such that if $g_{1} \in G$ and $g_{2} \in G$, then $g_{1} g_{2} \in G, g\left(g_{2} g_{3}\right)$
(3) $E \in G$ such that $g \cdot E=E \cdot\left(g_{1}, g_{2}\right) g_{3}$ $-g=g$ for all $g \in G$. Es is the identity
(2) If $g \in 6$ then there exists $g^{-1} \in G$ $g \cdot g^{-1}=g^{-1} \cdot g=E$

Examples of groups: The set unitary operators on a d-dimensional Hilbert space is a group U(d)

- the binary operation is matrix multipluto

$$
-U_{1}^{+}=U_{1}^{-Y}
$$

- $U_{1} U_{2}$ is untary if U_{1}, U_{2} cuntary
- Ratations in 3D form agroup SORS) special athogonal group ? determisant 1, 3×3 orthagonal rotation Matrices
- Translations in 3D space form a group \rightarrow binary opesation is vector aldition $\vec{v}_{1}, \vec{V}_{2}, \rightarrow \vec{V}_{1}+\vec{v}_{2}$
- identity translation:
- inverses $\vec{V}^{-1}=-\vec{V}$

Same important facts about groups;

- Given a group G, we con consider subsets HCG that are also groups:
HCG is a subgroup if:

1. $E \in H$
2. H closed under multiplication
3. It closed under taking uherses

Examples - Consider the rotation group So (3). We an consider all rotation about some fixed axis \hat{n}. This is a subgroup $\operatorname{SO}(2) \subset S O(3)$

- Consider $\mathbb{R}^{3}=\{(x, y, z)\} 30$ translation group. Pick 3 linearly independent vectors $\vec{t}_{1}, \vec{t}_{2}, \vec{t}_{3}$

$$
T=\left\{n \vec{t}_{1}+M \vec{t}_{2}+l \vec{t}_{3}, n, m, l \in \mathbb{Z}\right\}
$$

this is a subgroup $T \subset \mathbb{R}^{3}$ known as
a Braves latisce
We can learn about the structive of 6 from a subgray H.
we condefine a right coset $H_{g}=\{h g \mid h \in H\}$ for $g \in 6$
Important fact every $g^{\prime} \in G$ is in exactly ore night colet of H,
proof: first: $E \in H$

$$
H g^{\prime}=\left\{h g^{\prime} \mid h \in H\right\} \ni E g^{\prime}=g^{\prime}
$$

so g^{\prime} is in at least ane coset. Now we need to show that it $g^{\prime} \in \mathrm{Hg}_{1} g^{\prime} \in \mathrm{Hg}_{2}$

$$
\begin{gathered}
\Rightarrow H g_{1}=H g_{2} \quad \mid \\
g^{\prime}=h_{1} g_{1}, g^{\prime}=h_{2} g_{2} \\
h_{1} g_{1}=h_{2} g_{2} \\
h_{2}^{-1}\left(h_{1} g_{1}\right) g_{1}^{-1}=h_{2}^{-1}\left(h_{2} g_{2}\right) g_{1}^{-1} \\
H כ h_{2}^{-1} h_{1}=g_{2} g_{1}^{-1}
\end{gathered}
$$

$$
\begin{aligned}
& H=H g_{2} g_{1}^{-1}=\left\{h_{g_{2}} g_{1}^{-1} \mid h \in H\right\} \\
& H g_{1}=H g_{2} \\
& h^{\prime}=h g_{2} g_{1}^{-1} \\
& =\left\{h^{\prime} \mid h \in H\right\}
\end{aligned}
$$

nistle index of H in $G|G ; H|$ $\left\{E, g_{1}, g_{2}, \ldots g_{n-1}\right\}$ coset represertatives of H
Example: ID Bravais latice $T=\{n \hat{x}, n \in \mathbb{Z}\}$

