Lecture	1 Weld	come to	Phys 598 GTC
	boals for +l	~e (OW &	for research on topological materia
· · · · · · · · · ·	· · · · · · · · · · · · · · ·		· Understad modern developments in He theory of Maninteractivy electrons
			Develop a foundation for understadig group theory in solid State physics
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1<	Guide to	topics	D Space group symmetries

2 Wannier Functions and Band representations (3) Berry phases and Band topology (1) Topological crystalline insulators course website : courses. physics. Illinois. edu/phys 5989tc Course components' Lectures HWs (~6) Final Presentations

Hws graded primarily on completion rather than correctness Office Hours! Mondays Will send a via Zoom link on course website. I. Review/Refresher/Intro to Group Theory Useful resources; Dresselhaus, "Applications of Group Thy to Physics of Solids" · Bradley & Cracknell 'Mathematical Thy of Synnetry in Solids "

· Serre "Linear Representations of Finite Groups" Storting point: $H = \frac{\rho^2}{2m} + V(\vec{x}) + ...$ $H|\Psi>=E|\Psi>$ X->X' p-) p' 14>->14>>

	ormations
$\dot{x}' = R\dot{x} + \dot{d} \qquad R \ 15 \ \alpha \ 3x3 \ \dot{p}' = R\vec{p} \qquad R^{T} = R^{-1}$	Matrix
Intustive Facts: 1) IF I have two trans	formations,
I can first do one the this is also a transformation	r
I can always undo a cond that glico a transformed	a transformation

(3) I can always ob a transformation that does absolutely nothing Définition a set G is a group if i (1) there's a binary operation such that if $g_1 \in G$ and $g_2 \in G$, then $g_1 \cdot g_2 \in G$, $g(g_1,g_2)$ (3) $E \in G$ such that $g \cdot E = E \cdot g = g$ for all geG. Eistle identity

	If $g \in G$ then there exists $\overline{g} \in G$ $g \cdot \overline{g}^{-1} = \overline{g}^{-1} \cdot g = \Sigma$
Examples on d	of groups: The Set unitary operators d-dimensional Hilbert space is a U(d)
Scoup	U(d) - He brary operation is matrix multiplicity - $U_1^{\dagger} = U_1^{-1}$

U, UZ is Unitary if U, UZ contary -Ratations in 3D Form a group SORS) special orthogonal group determinant I, 3x3 orthogonal rotation Matrices Translations in 3D space form a group $\vec{V}_1, \vec{V}_2, \rightarrow \vec{V}_1 + \vec{V}_2$

· 1 dentity translation, \vec{O} · Inverseus $\vec{V}^{-1} = -\vec{V}$
Some important facts about groups'
· Given a group G, me can earsider subsets
· Given a group G, me can consider subsets HCG that are also groups.
HCG 159 Subgroup 17?
1, EEH
2. H closed under multiplication

	3. 17 closed under taking inverses
Examples.	· Consider the rotation group SO(3). We can
· · · · · · · · · · · · · · · · · ·	Consider all solations about some fixed axis
· · · · · · · · · · · · · · · · · · ·	Consider all rotations about some fixed axis \hat{n} . This is a subgroup $SO(2) \subset SO(3)$
· · · · · · · · · · · · · · · · · · ·	• Consider $\mathbb{R}^3 = \{(x, y, z)\}$ 3D translation
· · · · · · · · · · · · · · · · · · ·	group. Pick 3 linearly independent vectors
· · · · · · · · · · · · · · · · · · ·	f_1, t_2, t_3
· · · · · · · · · · · · · · · · · · ·	$T = \{ n \hat{t}_1 + m \hat{t}_2 + l \hat{t}_3, n, m, l \in \mathbb{Z} \}$
· · · · · · · · · · · · · · · · · · ·	this is a subgroup TCIR ³ known as

a Bravais lattice
We can learn about the structure of 6 from a subgray H.
we condefine a <u>right coset</u> Hg= Ehg heH} for
Important fact; every g'GG is in exactly one right cost of H,
proof: fust: EeH Hg'= Ehg/ heH} 7 Eg'= g'

so g'isin at least one coset. Now we need to show that if g'GHg, g'GHgz => Hg,=Hg, g'=h,g, g'=h2g, $h_{1}g_{1} = h_{2}g_{2}$ $h_2^{-1}(h_1g_1)g_1^{-1} = h_2^{-1}(h_2g_2)g_1^{-1}$ $H = h_2^{-1}h_1 = g_2 g_1^{-1}$

 $H = H g_2 g_1^{-1} = \{h g_2 g_1^{-1} | heH\}$ $H_{9_1} = H_{9_2}$ $h = hg_{1}g_{1}^{-1}$ ={h/| he H} $G = HUHg_1UHg_1U - - UHg_1$ 1 right cosets

nistle index of H in G $ G;H $ $(E, S_1, g_2,, g_{n-1})$ coset representatives of H						
		Bravais lat	the $T=\{n\hat{X}, n\in\mathbb{Z}\}$			