Lecture II Announcement - No office hows tomorrow - Make up office his Man Spa

Recap: Little group G_{k} of a pt \vec{k} in Brillouin zoe $G \supset G_{l}=\{\{R \mid \vec{d}\} \in G \mid R \vec{k}=\vec{k}$ module reciprocal lattice vector $\}$ $R \vec{k} \equiv \vec{k}$
${ }^{-}$equivalent nodule reciprocal lattice

$$
\text { if } g_{k} \in G_{k} \text { then } U_{g_{k}}\left|\psi_{n k}\right\rangle=\sum_{m} \mid \psi_{m g_{k} k}>B_{m n}^{k}\left(g_{k}\right)
$$

$$
=\sum_{n}\left|\psi_{m k}\right\rangle \beta_{m b}^{k}\left(g_{l}\right)
$$

$\rightarrow \int\left[B_{k}^{k}\left(g_{k}\right) \mid g_{k} \in G_{k}\right\}$ form a represectation of the little group G_{k}

Irreducible represertations of G_{l};

- G_{l} symmorphic - we con determie ireps from ireps of $\bar{G}_{k}=G_{k} / T$ (1,itle agroup)
- $G_{\Gamma=0}$ arreps are also determined by ireps

$$
\text { of } \bar{G}_{r=0}=\bar{G}
$$

- Nonsunnooplie $G_{\vec{l}}$ - we have to do more work
Example: $P 2_{1}=\left\langle T,\left\{C_{z_{z}}\left\{\frac{1}{2} \vec{e}_{j}=\frac{1}{2}(\vec{z}\}\right\}\right.\right.$

What does the tell is about electrons?

$$
\begin{aligned}
(*) H\left|\psi_{n k}\right\rangle & =E_{n k}\left|\psi_{n k}\right\rangle \\
U_{g_{k}}\left|\psi_{n k}\right\rangle & =\sum_{m} \psi_{n k}>B_{m n}^{k}\left(g_{k}\right) \quad g_{2} \in G_{k}
\end{aligned}
$$

g_{k} is a symmetry of $H \Rightarrow$

$$
H U_{g_{k}}=U_{s_{k}} H
$$

uss this on *

$$
H U_{O_{k}}\left|\psi_{1}\right\rangle U_{9_{k}} H\left|\Psi_{n k}\right\rangle=E_{n k} U_{9_{k}}\left|\Psi_{n k}\right\rangle
$$

$U_{s_{k}}\left|\psi_{n k}\right\rangle$ is an ejgenslate of H w/ eigenvalue $E_{1 k} \quad\left\{\left|\psi_{n k}\right\rangle\right\}$ transforms in a reducille represertatere of G_{k} determand bo $B_{n_{m}}^{k}\left(G_{k}\right)$ Schw's lemma - this repaseetaten is reducible, and $\quad B^{k}=\bigoplus_{i} \eta_{i} \quad \eta_{i}$ irreducible, and States in the sore reprematutio are degenerate

η_{i} resit $G_{l i}$
In our $P Z_{1}$ example:

- all states at T can be labelled either

$$
\Gamma_{1} \text { or } \Gamma_{2}
$$

- all states at Z con be labeled esther Z_{1} ate

To connect these band, we can look ot compatibility relations for the space group

Idea lets consider \vec{k} and a nearby point $\vec{k}+t \delta \vec{k} \quad t$ real
$\delta \vec{i}$ is a find vector
$h \in G_{\hat{k}^{2}+t \delta \varepsilon}$ for all t then $h \in G_{\hat{k}_{k}+0 \& 6}=G_{\vec{l}}$
so the little grape $G_{\hat{k}+t \delta \vec{k}} \subset G_{k}$
$1,1+t h e$ group of the lie $\{\vec{k}+t \delta \vec{k}\}$
Given $C_{k} ; G_{k} \rightarrow O(V)$ an irrep of G_{k} we oas define $e_{k} \downarrow G_{\vec{l}+\delta \delta \bar{l}}=\eta$
η is the restriction of e_{k} to $G_{k+6 \delta k}$
$\eta(h)=e_{k}(h)$ for $h \circ G_{\vec{\zeta}+t \&}$ ．
$\eta=\bigoplus_{i} \eta_{i}$ for η_{i} rrepsof $G_{\vec{L}+t \delta \vec{\zeta}}$

$$
+e_{k} ⿻ 上 丨 G_{k+t s k}=\eta_{1} \oplus y_{2} \otimes \eta_{3}
$$

$e_{k} \downarrow \sigma_{l+t \delta l}=\oplus_{i} \eta_{i}$ are
known as compatibility relations

Lets look at our P2, example

Imps of G_{Λ}

$$
e_{t}(\{E \mid \vec{t}\})=e^{-2 \pi i t t_{3}}
$$

$$
\rho_{t}\left(\left\{c_{2 z} \left\lvert\, \frac{1}{i} \vec{e}_{3}\right.\right\}\right)^{2}=\rho_{t}\left(\left\{E \mid \vec{e}_{3}\right\}\right)=e^{-2 \pi i t}
$$

$$
\begin{aligned}
& \Gamma_{(0,0,0)} \wedge_{(0,0, t)} \underset{\left(0,0, \frac{1}{2}\right)}{Z} \\
& \tan _{t \rightarrow 0} \quad \Lambda \rightarrow T \\
& t \rightarrow \frac{1}{2} \wedge \rightarrow z \\
& G_{\Lambda}=\left\langle T,\left\{C_{2 t} \left\lvert\, \frac{e_{3}}{2}\right.\right\}\right\rangle=G
\end{aligned}
$$

$$
\begin{aligned}
& e_{t}\left(\left\{c_{z_{t}} \left\lvert\, \frac{1}{i} \vec{e}_{b}\right.\right\}\right)=\left\{\begin{array}{l}
t e^{-i \pi t} \\
-e^{-i \pi t}
\end{array}\right.
\end{aligned}
$$

$$
\begin{aligned}
& t \rightarrow 0: \Lambda_{t \rightarrow \Gamma} \begin{array}{l}
\Lambda_{1} \rightarrow \Gamma_{1} \\
\\
\\
\Lambda_{2} \rightarrow \Gamma_{2}
\end{array} \\
& t \rightarrow-\frac{1}{2} \Lambda \rightarrow z \\
& \Lambda_{1} \rightarrow Z_{1} \\
& 1_{2} \rightarrow Z_{2}
\end{aligned}
$$

$P L_{1}$

$H=\left(\frac{x \mid \Delta}{\Delta \mid x}\right)$ - Compatibility relations force bands to come in groups
the minimum number of isolated bands is $2 \quad \Gamma_{1} \rightarrow z_{1} \rightarrow \Gamma_{2} \rightarrow Z_{2}$

- Nasymmorphie space groups have stable, uirenomade band crossings

Lessons so far
(1) Bloch states w/ momentum \vec{k} tranformin represulatores of the lithe group $G k$.
(2) All states that transform in the same insp of G_{u} are degenerate, and this degeneracy cant be split who breaking a symmetry (Schur's Lemma)
(3) Schur's Lemma - when bands cross, the crossing cont be aped by small pertubbators if the bands carry different ines
(4) Screw (also glide) syanetrus require ramerounde band crossings aloy high symmetry lines

