Lecture 11	Announcement - No office hours tomorrow - Make up office hrs Man 4pm
G D	Little group Gk of a pt k in Brillouin Zone Gk = Erlidde G Rk = k modulo recipiocal lattie vectors
· ·	RK= k Sequivalent modulo reciproval lattice vectors
ŀ ($g_k \in G_k$ then $\bigcup_{k} \Psi_{nk}\rangle = \sum_{M} \Psi_{Mg_kk}\rangle - B_{Mn}^k(g_k)$

	$= \sum_{m} \mathcal{Y}_{mk} > \mathcal{B}_{mk}^{k}(g_{k})$
<u>َ</u> کرد۔	Bk(9k) 9kGGk form a representation
of the little	sroup Gk
Irreducible 1	epresentations of Gki
Irreducible 1	epresentations of GLi - GL symmorphic - we can determine irreps from irreps of GL = GL/T (little cogresse)

	$f \overline{G}_{F=0} = G$
	Vonsymmorphic GZ - we have to do more work
Example: P21 =	$ \begin{array}{c} \langle T \left\{ C_{27} \left \frac{1}{2} \overrightarrow{e_{3}} = \frac{1}{2} c_{7}^{2} \right\} \\ \hline 1 \\ -1 \\ -1 \\ -1 \\ 1 \end{array} \right\} $
	$\begin{array}{c} \begin{array}{c} \hline 1 \\ -1 \\ -1 \\ \end{array} \end{array} \end{array} \begin{array}{c} \hline 1 \\ \hline 1 \\ \hline 1 \\ \hline 1 \\ \end{array} \end{array} \begin{array}{c} \hline 1 \\ \end{array} \end{array} \begin{array}{c} \hline 1 \\ 1 \\$
$ \begin{aligned} G \\ Z = \left(\frac{1}{2}\overline{b}_{3}\right)^{2} \\ Z_{1} \end{aligned} $	$\frac{\mathbf{E} \left[\mathcal{G}_{1} \right] \left[\mathbf{t}_{3} \right]}{1 + \mathbf{i}} = \mathbf{e}^{\mathbf{i} \pi} \mathbf{t}_{3}$ $1 - \mathbf{i} = \mathbf{e}^{-\mathbf{i} \pi} \mathbf{t}_{3}$

What does this tell us about electrons? (*) $H | \Psi_{nk} > = E_{nk} | \Psi_{nk} >$ $U_{g_k}|\Psi_{nk}\rangle = 2|\Psi_{nk}\rangle B_{m_n}^k(g_k) g_i \in G_k$ guis a symmetry of H =7 $HO_{g_{L}} = O_{g_{L}}H$ Usy this on t $HU_{Jk}|\Psi_{\lambda k} \geq = E_{\lambda k}U_{S_{k}}|\Psi_{\lambda k} >$

Usk 1/2 is an eigenstate of H w/ eigenvalue
Enk {14, k} transforms in a reducille
representation of Gk determined by B ^k _{nm} (Sk)
Schwis lemma - this representation is reducible, and $B^{k} = \bigoplus \eta$, η , irreducible, and
· · · · · · · · · · · · · · · · · · ·
states in the some repretentation are degenerate

			*
			n
			.7,
		 	· · · · · · · · · · · · · · · · · · ·
			kt k
			·· K* · · · · · · · · · · · · · · · · ·
		· · · · · · · · · · · · · · · · · · ·	· · • · · · · · · · · · · · · · · · · ·
• • • •		· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·
		· · · · · · · · · · · · · · · · · · ·	\mathcal{N}
			7. Inpit Gkt
	· · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	
		ur PZI example:	
		vit a property example i'm	
		· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·
		\mathcal{T}	
	. • • • • • • • • • • • • • • • • • • •	1 States at 1	can be labelled either
· · · ·	- q	11 States at 1	can be labelled either
· · · · ·			can be labelled either
· · · · ·			con be labelled either
 · · · · · 			can be labelled either
 		ī or lz	· · · · · · · · · · · · · · · · · · ·
 		ī or lz	· · · · · · · · · · · · · · · · · · ·
 		ī or lz	· · · · · · · · · · · · · · · · · · ·
 		ī or lz	· · · · · · · · · · · · · · · · · · ·
		ī or lz	can be labelled either in he labelled either ZarZe

Ex H= (HAB) HAA HAB -k Z, • 7, 0 To connect these bands, ve can look of Compartibility relations for the space group

Idea; lets consider it and a nearby point
\vec{k} + tS \vec{k} t real S \vec{k} is a fixed vector
he Gittsk For all t then he Gittosk = Gi
so the little group GK+tSK CGK
little group of the line {k+t8k5
Given Rk: Gk->U(V) an irrep of Gk we can
define RKUGE++SE = 1

1/ 15 the restriction of Rk to Gk+18k $\eta(h) = Q_k(h)$ For $h \in G_{k+1} \in \mathcal{F}$ n= Pn. For n. mepsof Gi+tsi Ex if QKUG = 7,0%,0% ML 95 RUGZ+tSE= ON, are known as compatibility relations

Lets Look at our PZ, example Z (0,0, {}) (0,0,0) (0,0,t)t-10 ハート t-1 { ハーマ $G_{\Lambda} = \langle T, \{C_{12} \mid \frac{e_3}{2} \} = G$ $e_{t}(\{E|i\}) = e^{-2\pi i t \theta_{3}}$ Irreps of GA $P_{t}(\{C_{zz}|_{\overline{z}}^{z}\hat{e}_{s}\}) = P_{t}(\{E|\hat{e}_{s}\}) = e^{-2\pi i t}$

 $\mathcal{R}_{t}(\{\mathcal{L}_{21} \mid \frac{1}{t} \hat{e}_{s}\}) = \begin{cases} +e^{-int} \\ -int \\ -e \end{cases}$ E KG1263 SE163 F 1 1 1 F 1 -1 1 F 1 -1 1 $\frac{\left[\begin{array}{c} C_{u} \right] \left[t_{e_{3}} \right]}{\Lambda_{1} \left[1 + \overline{e}^{i p t} \right] \left[\begin{array}{c} \overline{e} \right] \left[t_{e_{3}} \right]} \left[\overline{e} \right] \left[t_{e_{3}} \right]}$ もう; ハーマ Λ,-77, $\frac{E}{Z_1} \frac{G[\frac{1}{2}t_3]}{Z_1} \frac{F[\frac{1}{2}t_3]}{F[\frac{1}{2}t_3]} \frac{F[\frac{1}{2}t_3]}{F[\frac{1}{2}t_3]}$ 12-77) $-\overline{2}\overline{1}\overline{1}\overline{1}\overline{1}$ $\Lambda_2 \left[1 - e^{i i i t} \right]$ もっ~~~ ハーフマ Λ - Γ f-70; 1-7 Λ₋¬Z, $\Lambda_1 \rightarrow \lceil_2$ イレッイ

P21	ZI AI A FFAI AZ ZI ZI AI AFFAI AZ ZI
ret Stable +0 pertulations	$\frac{-k}{t_2} \frac{\Lambda_2}{\Lambda_2} \frac{\Lambda_2}{\Lambda_2} \frac{\Lambda_1}{\Lambda_2} \frac{\Lambda_1}{\Lambda_2} \frac{\Lambda_1}{\Lambda_2} \frac{\Lambda_1}{\Lambda_2} \frac{\Lambda_2}{\Lambda_2} \Lambda_2$
$H = \left(\frac{\times \mathbb{A} }{ \mathbb{A} \times }\right)$	
· ·	the minimum number of isolated bands is 2 , $(7-77-7)$, $(7-77-7)$

Nonsymmorphic sporce groups have stable, unremovable band crossings Lessons so far D Bloch states w/ momentin k transform in representations of the little group Gk (2) All states that transform in the <u>same</u> inep of Gh are degenerate, and this degeneracy cant be split w/o breaking a symmetry (Schur's Lemma)

(3) Schwis henna - when bands cross, the crossing cant be gapped by small perturbations if the bands carry different irreps (f) Screw (also glide) symmetry require nonremovable band crossings along high symmetry lines