Lecture 12

$$
\left\{\begin{array}{l}
\phi e_{1}=\left\{\left|\varphi_{i}\right\rangle\right\} \text { ID } \\
q_{1}=\left\{\left|\varphi_{a}\right\rangle\right\} \\
k
\end{array}\right.
$$

$$
\left(\begin{array}{cc}
\langle\psi| H|\psi\rangle & \langle\psi| H|\varphi\rangle \\
\langle\varphi| H|\psi\rangle & \langle\varphi| H|\varphi\rangle
\end{array}\right)
$$

Two last ingredients to stady electrovic Stincture
(1) S pin
(2) Time-reversal symetry
(1) So far $G \subset \mathbb{R}^{3} \propto Q(3)$ elections have span-1/2
In the absence of spin-oibit couply $(S O C)$

$$
\begin{aligned}
& H_{e^{-}}=H_{\theta} \otimes \sigma_{\theta \ll} \\
& \text { completely } \\
& \text { is He space of elected spin } \\
& \text { Spin-sidepandert }
\end{aligned}
$$

If we have SOC, we need to use represectaters of $S U(2)$ to describe how rotations act on spin

Reminder: SO(2) - group of 2×2 unitary matrices w/

$$
\begin{aligned}
& \theta=2 \pi \quad g=-\sigma_{\theta}
\end{aligned}
$$

To encode thws, we can exterd the Euclidear grap by a rew ehement \bar{E}

$$
\bar{E}^{2}=E
$$

$$
\begin{array}{ll}
\rho(\bar{E})=\text { identity matrix } & \ell \in \mathbb{Z} \\
\rho(\bar{E})=- \text { identity vatrix } & \ell \text { half-inger }
\end{array}
$$

Examplei I_{n} so (3) $\supset D_{2}=\left\{C_{2 x}, C_{2 y}, C_{z z}\right\}$

$$
C_{2 x} C_{2 y}=C_{2 z}
$$

In $S U(2)$ Defing representation $\rho_{\frac{1}{2}}$

$$
\begin{aligned}
& \rho_{\frac{1}{2}}\left(C_{2 x}\right)=e^{-i \pi \sigma_{x} / 2}=-i \sigma_{x} \\
& e_{\frac{1}{2}}\left(C_{2 y}\right)=e^{-i \pi / 2 \sigma_{\nu}}=-i \sigma_{\nu}
\end{aligned}
$$

$$
\begin{aligned}
& \rho_{\frac{1}{2}}\left(C_{2 z}\right)=-i \sigma_{z} \\
& e_{\frac{1}{2}}\left(C_{2 x}\right) \rho_{\frac{1}{2}}\left(C_{2 y}\right)=\left(-i \sigma_{x}\right)\left(-i \sigma_{y}\right) \\
&=-\left(1 \sigma_{z}\right)=\rho_{\frac{1}{2}}\left(C_{2 z}\right) \\
& e_{\frac{1}{2}}\left(C_{2 y}\right) \rho_{\frac{1}{2}}\left(C_{2 x}\right)=\left(-i \sigma_{y}\right)\left(-i \sigma_{x}\right) \\
&=+i \sigma_{z} \\
&=e_{\frac{1}{2}}(\bar{E}) \rho_{\frac{1}{2}}\left(C_{2 z}\right)
\end{aligned}
$$

Sa in $S U(2)$

$$
C_{2 x} C_{2 y}=\bar{E} C_{2 y} C_{2 x}
$$

Double group of D_{2}

$$
\begin{aligned}
& \left\{E, C_{2 x}, C_{2 \gamma}, C_{z z}, \bar{E}, \bar{E} C_{z x}, \bar{E} C_{z \gamma}\right. \\
& \left.\bar{E} C_{2 z}\right\} \\
& C_{2 x}^{2}=C_{z y}^{2}=C_{2 z}^{2}=\bar{E}-Q \\
& H=\{E, \bar{E}\} \triangleleft S U(z)
\end{aligned}
$$

$$
S \cup(2) / H=S O(3)
$$

lIst isomarpluism theorem SUR) is a double cover of So (3)
For rotations: view (double) pant groups as subgroups of $S U(2)=\operatorname{Spin}(3)$

$$
\operatorname{Spin}^{(3)} /\{E, E\}=S O(3)
$$

$$
\operatorname{Pin}(3) /\{E, E] \stackrel{3}{=} \bigcirc(3)
$$

Two pessibilities: $\quad I^{2}=\left\{\begin{array}{l}E \leftarrow P_{i n}(3) \\ E<P_{n n}(3)\end{array}\right.$
Pin_(3) is the physical chaice $\operatorname{soin}-\frac{1}{2} s$ tranform like magnetre field

$$
\begin{aligned}
P_{\text {in }}(3) & =S U S 2 \times\{E, I\} \\
& =\{g, g I \quad(g \in S U(2) \quad g I=I g\}
\end{aligned}
$$

For spin-L particles, syanetry grenps ot Hamiltavans will be subgroups $\mathbb{R}^{3} \propto P_{1 n}-(3) \supset G$ double soace grayes If η is a represectation of a double grenp
(1) $y(E)=y(\bar{E}) \rightarrow y$ is a single-valued eporated - y is also a representation of "ordiurry" space groups
(2) $\eta(E)=-\eta(\bar{E}) \rightarrow \eta$ is a donde valued repesestiator.

$$
\begin{aligned}
Q= & \left\{E, C_{2 x}, C_{2 y}, C_{i z}, \bar{E}, \bar{E} C_{i x}, \bar{E} C_{i r},\right. \\
& \left.\bar{E} C_{2 z}\right\} \\
& C_{2 x} C_{2 y}=C_{2 z} \quad C_{2 i}^{-1}=\bar{E} C_{2 ;} \\
& C_{2 y} C_{2 x}=\bar{E} C_{2 z}
\end{aligned}
$$

$$
\begin{aligned}
C_{2 x}^{2}=C_{2 y}^{2} & =C_{2 z}^{2}=\bar{E} \\
C_{2 x} C_{2 y} C_{2 x}^{-1} & =\bar{E} C_{2 y} C_{2 x} C_{2 x}^{-1}=\bar{E} C_{2 y}
\end{aligned}
$$

5 canjugacy classes: \{E\}
$\rightarrow 5$ ireducible representations $\{E\}$

	E	E	$C_{2 x}$	$C_{2 y}$	$C_{2 z}$	$\left\{C_{2 x}, \bar{E} C_{2 x}\right\}$
Γ_{1}	1	1	1	1	1	$\left\{\begin{array}{l}\Gamma_{2} \\ \Gamma_{2} \\ \Gamma_{3}\end{array}\right.$
1	1	1	-1	-1	1	-1
Γ_{4}	1	1	-1	-1	1	$\left\{C_{2 z}, \bar{E}, \bar{E} C_{2 z}\right\}$

$$
\begin{array}{ll}
\vec{F}_{5} \mid 2-200 & 0 \\
F_{S}(E)=\sigma_{\theta} & \\
\Gamma_{1}, T_{2}, F_{3}, \Gamma_{2} \text { are } \\
F_{5}(\bar{E})=-\sigma_{0} & \text { rreps of } D_{2} \text { if ere } \\
F_{S}\left(C_{2 i}\right)=-i \sigma_{i} & \text { forget qbout } \overrightarrow{ }
\end{array}
$$

(2) Time-reversal symmetsy T On Hilbert space

$$
\begin{aligned}
& T \vec{x} T^{-1}=\vec{x} \\
& T \vec{p} T^{-1}=-\vec{p}
\end{aligned}
$$

But tive-reversal camet be unttory

$$
\begin{aligned}
{\left[x_{i i} \rho\right] } & =\hbar \delta_{i j} \\
T\left[x_{i}, p_{j}\right] T^{-1} & =\left[T x_{i} T^{-1}, T p_{j} T^{-1}\right] \\
& =\left[x_{i},-p_{j}\right]
\end{aligned}
$$

$$
=-i \hbar
$$

Resolutioni T is an antiunitary operator
Defintion of an antiunstary operator:
Let $\left\{\left|v_{i}\right\rangle\right.$ be aset of basss vectors
I is an antiunttary operator if:
(1) $T\left(\alpha\left|v_{i}\right\rangle+\beta\left|v_{j}\right\rangle\right)=\alpha^{*} T\left|v_{j}\right\rangle+\beta^{+} T\left|v_{j}\right\rangle$

$$
\begin{aligned}
(2)\left\langle T v_{j} \mid T v_{i}\right\rangle & =\left\langle V_{j} \mid V_{i}\right\rangle^{\tau} \\
& =\left\langle v_{i} \mid V_{j}\right\rangle
\end{aligned}
$$

We con ntisoduce amatsix

$$
U_{T}^{i j}=\left\langle V_{i} \mid T V_{j}\right\rangle
$$

to see how T acts on a state

$$
|v\rangle=\sum_{i} a_{i}\left|V_{i}\right\rangle
$$

$$
\begin{aligned}
T|v\rangle & =\sum_{i} T\left(a_{i}\left|v_{i}\right\rangle\right) \\
& =\sum_{i} a_{i}^{*} T\left|v_{i}\right\rangle \\
& =\sum_{i j} a_{i}^{*}\left|v_{j}\right\rangle\left\langle v_{j} \mid T v_{i}\right\rangle \\
& =\sum_{i}\left(u_{T}^{j i} a_{i}^{*}\left|v_{j}\right\rangle\right.
\end{aligned}
$$

we con say that T is reperewted
by $U_{T} \mathcal{X}$ complex conjugation of Scalars

$$
\begin{aligned}
& K\left|v_{i}\right\rangle=\left|v_{i}\right\rangle \\
& K \alpha=\alpha^{+} k
\end{aligned}
$$

Given two vectors $|v\rangle=\sum_{i} a_{i}\left|V_{i}\right\rangle$

$$
|w\rangle=\sum_{j} b_{j}\left|v_{j}\right\rangle
$$

$$
\begin{aligned}
& \left\langle T_{v} \mid T_{w}\right\rangle=\langle w \mid v\rangle=\vec{b}^{*} \cdot \vec{a} \\
& \left(a^{T} \cdot U_{T}^{+}\right)\left(U_{T} \vec{b}^{*}\right) \quad U_{T}^{t}=U_{T}^{-1}
\end{aligned}
$$

Antumptrar operators T ca be represented as $U_{T} K$ w/ U_{T} a un story matrix

Ex spin= ${ }^{1} E$ particles

$$
\begin{aligned}
& \mid \hat{\imath}>\text { basis } \\
& 11>\underset{\text { states }}{ }
\end{aligned}
$$

$T|\hat{\imath}\rangle=-|\downarrow\rangle$
$T|\downarrow\rangle=+|\hat{\imath}\rangle$

$$
" T=i \sigma_{y} \chi^{"}
$$

$\langle\uparrow \mid T \uparrow\rangle=0$
$\langle\downarrow \mid T b\rangle=0$
$i \sigma_{y}=\left(\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right)$
$\langle\hat{\prime} \mid T \downarrow\rangle=1$
$\langle\downarrow \mid \tau \hat{\rho}\rangle=-1$

$$
\begin{aligned}
& T(\alpha|\hat{\imath}\rangle+\beta|\downarrow\rangle) \\
& =-\alpha^{+}|\downarrow\rangle+\beta^{*}|\hat{\imath}\rangle
\end{aligned}
$$

Let T be antiuntery $\rightarrow T$ is a uritary operator

$$
\begin{aligned}
T^{2} & =U_{T} K U_{T} K \\
& =U_{T} U_{T}^{*}
\end{aligned}
$$

$$
\begin{aligned}
& T^{2}\left(\alpha\left|v_{i}\right\rangle+\beta\left|v_{j}\right\rangle\right) \\
& \alpha T^{2}\left|v_{i}\right\rangle+\beta T^{2}\left|v_{j}\right\rangle \\
& \left\langle T^{2} v\right| T^{2}|w\rangle=\langle T w \mid T v\rangle=\langle v \mid w\rangle
\end{aligned}
$$

Also $T \vec{x} T^{-1}=\vec{x} \rightarrow$ we want T to commute $w /$ all spatial symmetries Schw's lemma $T^{2}=\lambda I \operatorname{den} n, y$

$$
\begin{gathered}
\lambda= \pm 1 \\
T^{2}=U_{T} U_{T}^{*}=\lambda \\
U_{T}=\lambda U_{T}^{T}=\lambda^{2} U
\end{gathered}
$$

Spin-statiotios theorem: $\lambda=+1$ for in teger spin-sylu - Valued repersutorion
$\lambda=-1$ for double-valuedreps (half-integer Spin)

