hecture 3	Announzements;	· Office His stort tomorrow 4000-5000 Zoona link on
· ·		contact into page of course website HWIT will be posted this event
· ·	· · · · · · · · · · · · · · · · · · ·	due 9/12
Last two	r lectines; Groups, quotient group	subgroups, cosets, s, 1st Isomerphism theorem
One last p	ount about quotert gudent gudent gudent	proups
	· · · · · · · · · · · · · · · · · · ·	

$G = H \cup Hg_1 \cup Hg_2 \cup \cdots \cup Hg_{n-1}$
quotient group G/H = {H, Hg, Hg, Hg, Hg, Hg, }
In some cases, there prists a honomorphism
i 6/H -> G
$i(H_{9}) = 9_{1} \in G$
$c(H) = E \epsilon G$
of i exists and is a group homomorphism then
the set K: {E, 9, , 92, 9,} forms a group
Subgroup of G, isomorphic to G/H

then every goG can be written as hk hoH G=HK
IF this is possible, we say G=HXK G is the <u>semidarect product</u> of H with K
Example: The group of rigid transformations of 3D space - rotations - reflections - translations
E(3) Euclidean group
Example: The group of figils trouvisit for c space - rotations - reflections - translations E(3) Euclidean group $E(3) \ge g = \xi R \xi f$ Seitz symbol for g

· · · · · · · · · · · · · · · · · · ·	RE OR	3) rotation or reflection
Actson on points in space	VER3	translation
$g\vec{x} = R\vec{x} + \vec{v}$		· · · · · · · · · · · · · · · · · · ·
Multiplication: $9_1 = \{R_1 v_1\}$	· · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·
$g_{\nu} = \{R_{\nu} V_{\nu}\}$	· · · · · · · · ·	
$(9, 9) \vec{x} = 9, (9, \vec{x}) = 9, (R_2 \vec{x} + \vec{v}_2)$		
$= R_1 (R_2 \tilde{X} + \tilde{V}_2)$) + V,	
$= R_1 R_2 \dot{x} + (\dot{v}_1 + \dot{v}_2) \dot{x}$	$R_1 \vec{v}_2$)	
$9_{1}9_{2} = \{R_{1}R_{2} \vec{V}_{1} + R_{1}\vec{V}_{2}\}$	· · · · · · · ·	

$g_z^{-1} = \{ R_z^{-1} - R_z^{-1} V_z \}$ $\bar{g}_z^{-1} g_u = \{ E \hat{O} \}$
SELOS is the identity.
- the group of translations $\{E \vec{v} \} \vec{v} \in \mathbb{R}^3 \} = \mathbb{R}^3$
15 or normal subgroup of E(3)
Check: [RId STEIDSERIJ]
$= \{ R^{-1} - R^{-1} d \} \{ R v + j \}$
$= \{ E R^{-1}(v) \} \in \mathbb{R}^{3}$

 $\mathbb{R}^3 \triangleleft \mathbb{E}(3)$ $\{R|\hat{v}\} = \{E|\hat{v}\}\{R|\hat{\sigma}\} \in [R^3][O(3)]$ $s_{0} \mathbb{E}(3) = 12^{3} \times O(3)$ $\begin{bmatrix} TF \\ \{R_1 | V_1 \} \in \{R_2 | V_2\} = \{R_1 R_2 | V_1 V_2\} \end{bmatrix}$ Direct product (a, 5)(c, d)=(ac, bd) Semidirect product (9C, baida)

Hamiltonian $H = \frac{p^2}{2m} + V(x)$	i) invariant under a group of transformation G
$L \times P = 1 + h$	$\begin{array}{c} x \rightarrow x' = g \\ \rho \rightarrow \rho' = g^{-1} \rho \end{array}$
	$\Psi'(x) = \Psi(g^{-1}x)$
We can look for un	itary operators Ug for each g

$U_g^+ \times U_g = U_g^+ \rho U_g =$	κ′ ρ′
we want φ ;g	-> Ug to be a group homomorphism
we want $U_{g_1g_2} = U_{g_1}U_{g_2}$ $U_E = 1$ $U_{g_1} = U_{g_1}^{\dagger}$	We define: a (Unitary) representation of a group G 15 a vector space V and a homomorphism Q:G-DU(V) aurgroup unitary goerators/matires an V

୧(୨)	IJ	He	repress	ntatm	re of	9
Example: SU(2) every element by an axis \hat{n} an an angle $(\hat{n}, A) \rightarrow COS = 0 + isin = \hat{n} \cdot \hat{O}$	у Э Э	of E [[SU[2)),2,1)	15	Specif	red
$\vec{\sigma} = Z_x Z pauli Ma$ $\vec{\sigma}_0 = Z_x Z s dentify$	fres		· ·	· · · · · · · · · · · · · · · · · · ·	 · · · · · · · · <l< th=""><th></th></l<>	
Defining representation of SU(z)		· · ·	· · · · · · ·	· · · ·	· · · · ·	
But we also have the spin-I $(\hat{n}, \theta) \rightarrow \hat{e}^{\hat{i}\theta\hat{n}\cdot\hat{L}}$	L rep	Iresent	hation	· · · · ·	 	· · · ·

· ·	$L_{x} = \frac{1}{\sqrt{2}} \begin{pmatrix} 0 \\ 1 \\ 0 \\ 0 \\ 0 \end{pmatrix}$ $L_{z} = \begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ -1 \end{pmatrix}$	$\begin{pmatrix} 0\\1\\0 \end{pmatrix}$ $L_{\gamma} = ($	イローロ i ローi 10 i ロー)	· ·
Suppose space V.	we have a ne We say that erg)/w>eW	e prelentation two V for all	e of 1s an Iw>el	a group (Invariants N and ge	on Ulspace G
Since fler so	Q(q) are $unus W^{\perp} = \{ w$	fory, f M > $eV < v$	1 15 an 1w>=0	for all lw	nl(pae) >eW}

Since V=W@W-L then if we write	•
$P(g) = \begin{pmatrix} e_n(g) & e_n(g) & \cdots \\ e_n(g) & \vdots \end{pmatrix} \text{We can choose}$	•
a basis for V such that $P(5) = \left(\frac{P_w(9)}{O} \right)^2 = \left(\frac{P_w(9)}{O} \right)^2 + \frac{P_w(9)}{O} + P$	• • • • • • • • • •
Rw and Rwith are also representations of G Rw is a represention of G on W	•

$V = W \oplus W^{\perp}$ $e(g) = e_W(g) \oplus e_{W^{\perp}}(g)$ $e(g) = e_W(g) \oplus e_{W^{\perp}}(g)$
We say e is a reducible representation
A representation that is not reducible is called irreducible
(a represention is irreducible if the only invariant subspaces) are EOB and the entire space
Note: Every group G has a special ID irreducible representation Q(g) = 1

trivial representation Example: Consider two spin-12 particles, with Hilbert space V={III>, IVI>, IV>, IVV>} Here transform in a representation, $P((\hat{n}, \theta)) = e^{-i\frac{\theta}{2}\hat{n}\cdot\hat{\sigma}_{1}} = e^{-i\frac{\theta}{2}\hat{n}\cdot\hat{\sigma}_{2}}$ He D subspace W= { Is U>-1/1)} is an invariant subspace - spin-0 singlet

 $W^{+} = \left\{ \left| f f \right\rangle, \left| f_{\mathcal{I}}(|\hat{\mathcal{I}}_{\mathcal{I}}\rangle + |\mathcal{I}_{\mathcal{I}}\rangle), |\mathcal{I}_{\mathcal{I}}\rangle \right\}$ In the WEW+ basis Clebsch-Gordan coefficients - bases for invariant subspaces