Lecture 3 Announcements; Office His start tomorrow 4pm-5pm, zoom link an contact info page of cause website

- HW1 will be posted thiseveny, due $9 / 12$
Last the lectures; Groups, subgroups, coset, quotient groups, lis Isomaphesm theorem
One last point about quotent groups $H \triangleleft G, H a$ normal subgroup of G

$$
G=H \cup H g_{1} \cup H g_{2} \cup \cdots \cup H_{g_{n-1}}
$$

quotient group $G / H=\left\{H, H_{g}, H_{s_{2}}, \ldots H_{n_{n-1}}\right\}$
In some cases, there exists a homomorphism

$$
\begin{aligned}
& i: G / H \rightarrow G \\
& i\left(H g_{i}\right)=g_{i} \in G \\
& i(H)=E \in G
\end{aligned}
$$

If i ensts and is a group hamanorphion then He set $K ;\left\{E, g_{1}, g_{2}, \ldots g_{n-1}\right\}$ forms a group, Subsrenp of 6 , romarptuc to G / H
then every goG can be written as hb haH

$$
G=H K
$$

If this is possible, we say $G=H X K \quad G$ is the semidrect product of H with K
Example: The group of rigid transformations of 3D
space - rotations

- reflections
- translations
$\mathbb{E}(3)$ Euclidean group
$\mathbb{E}(3) \ni g=\{R \mid \vec{V}\}$ Seitz symbol for g

Action on points in space
$R \in O(3)$ rotation or reflection

$$
\begin{aligned}
& g \vec{x}=R \vec{x}+\vec{v} \\
& \text { Multiplucatisen, } \quad g_{1}=\left\{R_{1} \mid \vec{v}_{1}\right\} \\
& g_{2}=\left\{R_{2} \mid \vec{v}_{2}\right\} \\
&\left(g_{1} g_{2}\right) \vec{x}=g_{1}\left(g_{2} \vec{x}\right)=g_{1}\left(R_{2} \vec{x}+\vec{v}_{2}\right) \\
&=R_{1}\left(R_{2} \vec{x}+\vec{v}_{2}\right)+\vec{V}_{1} \\
&=R_{1} R_{2} \vec{x}+\left(\vec{v}_{1}+R_{1} \vec{V}_{2}\right) \\
& g_{1} g_{2}=\left\{R_{1} R_{2} \mid \vec{V}_{1}+R_{1} \vec{v}_{2}\right\}
\end{aligned}
$$ $\vec{V} \in \mathbb{R}^{3}$ translation

$$
g_{2}^{-1}=\left\{R_{2}^{-1} \mid-R_{2}^{-1} V_{2}\right\} \quad g_{2}^{-1} g_{2}=\{E \mid \vec{O}\}
$$

$\{E \mid 0\}$ is the identity.

- the group of translations $\left\{\{E \mid \vec{V}\} \mid \vec{V} \in \mathbb{R}^{3}\right\}=\mathbb{R}^{3}$ is a normal subgroup of $\mathbb{E}(3)$
chad: $\{R|d\} \in \mid \vec{v}\}\{R \mid \vec{d}\}$

$$
\begin{aligned}
& =\left\{R^{-1} \mid-R^{-1} d\right\}\{R \mid \vec{v}+\dot{d}\} \\
& =\left\{E \mid R^{-1}(v)\right\} \in \mathbb{R}^{3}
\end{aligned}
$$

$$
\begin{aligned}
& \mathbb{R}^{3} \triangleleft \mathbb{E}(3) \\
\{R \mid \vec{V}\}= & \{E \mid \vec{V}\}\{R \mid \vec{O}\} \in\left[\mathbb{R}^{3}\right][O(3)] \\
\text { so } \quad \mathbb{E}(3)= & \mathbb{R}^{3} \nexists O(3) \\
& \begin{array}{l}
\text { If }\left\{R_{1} \mid V_{1}\right\} \cdot\left\{R_{2} \mid V_{2}\right\}=\left\{R_{1} R_{2} \mid V_{1} V_{2}\right\} \\
\text { Drecterodect }(a, b)(c, d)=(a c, b d) \\
\text { Semidirct product }\left(a c, b a^{-1} d a\right)
\end{array}
\end{aligned}
$$

How do we use groups in solid state physics.
Haniltovion $H=\frac{p^{2}}{2 m}+V(x) \quad$ invariant under a group of

$$
[x, p]=i \hbar
$$

transformations G

$$
\begin{aligned}
& x \rightarrow x^{\prime}=g x \\
& p \rightarrow p^{\prime}=g^{-1} p \\
& \psi^{\prime}(x)=\psi\left(g^{-1} x\right)
\end{aligned}
$$

We con look for unitary operates U_{g} for each g that implement these transformation

$$
\left.\left|\psi^{\prime} \lambda=U_{g}\right| \psi\right\rangle
$$

$$
\begin{aligned}
& U_{g}^{+} x U_{g}=x^{\prime} \\
& U_{g}^{+} \beta U_{g}=\rho^{\prime}
\end{aligned}
$$

we wont $\varphi: g \rightarrow U_{g}$ to be a greup hamanophism

$$
\text { wewat } \begin{aligned}
U_{g_{1} g_{2}} & =U_{g_{1}} U_{g_{2}} \\
U_{E} & =1 \\
U_{g-1} & =U_{g}^{+}
\end{aligned}
$$

We define: a (untary)
representation of a greap G is
a vector space V and a homoonophsm

$$
e: G \rightarrow U(V)
$$

$\rho(g)$ is the represatituve of g
Example: $S U(2)$ every clement S of $\left.S U S_{2}\right)$ is specified by ar axis \hat{n} ar an angle $\theta \in[0,2 \pi)$

$$
\begin{aligned}
& (\hat{n}, \theta) \rightarrow \cos \frac{\theta}{2} \sigma+i \sin \frac{\theta}{2} \hat{n} \cdot \vec{\sigma} \\
& \vec{\sigma}=2 \times 2 \text { pauli matrices }
\end{aligned}
$$

$$
\sigma_{0} \quad 2 \times 2 \text { identity }
$$

Defining representation of $S U(z)$
But we also hare the spin-1 representation

$$
(\hat{n}, \theta) \rightarrow e^{-i \theta \cdot \hat{n} \cdot \tilde{L}}
$$

$$
\begin{aligned}
& L_{x}=\frac{1}{\sqrt{2}}\left(\begin{array}{lll}
0 & 1 & 0 \\
1 & 0 & 1 \\
0 & 1 & 0
\end{array}\right) \quad L_{y}=\left(\begin{array}{ccc}
0 & i & 0 \\
i & 0 & -1 \\
0 & 1 & 0
\end{array}\right) \frac{1}{\sqrt{2}} \\
& L_{z}=\left(\begin{array}{cccc}
1 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & -1
\end{array}\right)
\end{aligned}
$$

Suppose we have a representation ρ of a group 6 on space V. We say that $W \subset V$ is an invariant sulspace if $e(g)|w\rangle \in W$ for all $|w\rangle \in W$ and $g \in G$
Since $p(g)$ are unitary, if W son invariant subspace, then sass $W^{-1}=\{|V\rangle \in V \mid\langle V \mid W\rangle=0$ for all $|W\rangle \in W\}$

Since $V=W \oplus W^{-1}$ then if we write $\rho(g)=\left(\begin{array}{c}e_{1}(g) \\ e_{1}(g) \\ \vdots\end{array}(g) \cdots . ..\right)$ we can choose
a basis for V such that

$$
\left.\rho(g)=\left(\begin{array}{c|c}
e_{W}(g) & 0 \\
\hline 0 & \rho_{W}(g)
\end{array}\right)\right\} \begin{aligned}
& \text { bass vectors for } W \\
& \} \text { bass vectors for } W^{\mathcal{L}}
\end{aligned}
$$

ρ_{W} and $\rho_{W} \perp$ are also representations of G P_{w} is a repesestion of G on W

$$
\begin{aligned}
& V=W^{W} \oplus W^{\perp} \quad e_{W t} \text { is arepresentation of } 6 \\
& \rho(g)=e_{W}(g) \oplus \rho_{W^{1}}(g)
\end{aligned}
$$

We say e is a reducible representation
A representatives that is not reducible is called irreducible $\left(\begin{array}{l}\text { a represention is irreducible if the only invariant subspaces } \\ \text { are }\{0\} \text { and the entire space }\end{array}\right.$
Note: Every group 6 has a special ID irreducible representation

$$
p(g)=1
$$

trivial representation
Example: consider two spin-1/2 particles, with Hilbert space $V=\{|\hat{\imath} \hat{\jmath}\rangle,|\downarrow \hat{\imath}\rangle,|\hat{\imath} \downarrow\rangle,|\downarrow \downarrow\rangle\}$
tHese tionsform in a representation,

$$
\rho((\hat{n}, \theta))=e^{-\frac{i \theta}{2} \hat{n} \cdot \sigma_{1}} \otimes e^{-i \theta / 2 \hat{n} \cdot \vec{\sigma}_{2}}
$$

He D subspace $W=\left\{\frac{1}{\sqrt{2}}(|\hat{\downarrow}\rangle-|\downarrow \hat{j}\rangle)\right\}$ is an invariant subspace - spin -0 singlet

$$
\left.w^{+}=\left\{|\rho p\rangle,\left|\frac{1}{\sqrt{n}}(|\uparrow \downarrow\rangle+|\omega p\rangle),\right| \downarrow b\right\rangle\right\}
$$

in the $\mathrm{W}^{\circ} \mathrm{W}^{+}$basis

$$
\left.e([\hat{n}, \theta])=\left(\begin{array}{c|c}
1 & 0 \\
\hline \theta & e^{-i \theta \cdot \hat{L}}
\end{array}\right)\right\} W^{\perp}
$$

Clebsch-Gordan coefficients - bases for invariant subspaces

