· Makinger UP last lectures 9/19,9/7.1	oxten ded 5, 40 mins
- rearing up tos rearing the	
Recap. Characters of representations $P: G \rightarrow U(V)$. .
Character of R $\mathcal{X}_{e}: G \rightarrow C$ $\mathcal{X}_{e}(g) = tr(e(g))$	· ·
Schur Orthogonality Relationsi if we have two irreps Ri, Rz of	G

 $\sum_{\substack{g \in G}} \left[\mathbb{P}_{2}(g^{-1}) \right]_{a_{M}} \left[\mathbb{P}_{1}(g) \right]_{UB} = \begin{cases} 0 & \text{free}_{1} \neq \mathbb{P}_{2} \\ \frac{161}{J_{im} \mathbb{P}_{1}} & \text{Same free}_{1} \mathbb{P}_{2} \\ \frac{161}{J_{im} \mathbb{P}_{1}} & \text{Same free}_{1} \mathbb{P}_{2} \\ \frac{161}{J_{im} \mathbb{P}_{1}} & \text{Same free}_{1} \mathbb{P}_{2} \\ \frac{161}{J_{im} \mathbb{P}_{1}} & \text{Same basis} \end{cases}$ $\langle \mathcal{X}_{1}, \mathcal{X}_{2} \rangle = \frac{1}{161} \sum_{\substack{g \in G}} \mathcal{X}_{1}^{*}(g) \mathcal{X}_{2}(g) = \frac{1}{161} \sum_{\substack{g \in G}} \mathcal{X}_{1}(g^{-1}) \mathcal{X}_{2}(g)$ if R_1 and R_2 are irreducible, then $\langle \chi_{R_1}, \chi_{R_2} \rangle = \begin{cases} \Theta & \text{if } R_1 \neq R_2 \\ I & \text{if } R_1 \neq R_2 \\ I & \text{f } R_1 \neq R_2 \\ \text{cquivalent up to a basis} \\ \text{transformation} \end{cases}$ Two Final points about characters. [autority etg) = erg-1)]

	The Irm	educible cl + under ca	naracters Mjugatien -	form a c	omplete b	asis for	Functions
· · · · · · · ·	· · · · · · · ·	Given any	function	f:G-7	\mathbf{C}	· · · · · · · · · ·	· · · · · · ·
· · · · · · · · ·	· · · · · · · · ·	-0	f(h)=.	F(9hg-1)	for all	g and h	· · · · · · · · · · · · · · · · · · ·
			L Clas	function			
		ve have	f=Z	Ze Xe	n (xeec	
	· · · · · · · · · · · · · · · · · · ·	⇒) # (st irrep	s of agr	oup =	# of a	mugacy
ge G	dass,	CLOISS	es f	E has	N conju	jacy class	L
$C_{s} = \sum_{i=1}^{s} g_{i}$	99'-1	9'06}	G=C	,0020	UC	\sim	· · · · · · · ·

· · · · ·	Then $f_n(g) = \begin{cases} l & if g \in C_n \\ O & otherwise \end{cases}$	
· · · · · · · · · · · · · · · · · · ·	There's N of Fn => there must be N irreducible characters	•
· · · · · · · · · · · · · · · · · · ·	To prove this, procede by contradiction suppose f: G-DT. is a class function, and suppose that	•
 	$\langle \chi_{R_i}, f \rangle = 0$ for all irreps R_i'	•
· · · · · ·	$f_{i} = \sum_{g \in G} f(g^{-1}) P_{i}(g) \qquad \text{this is a matrix } V_{i} P_{i}$	•

and $Q_{i}(g')f_{i} = \sum_{g \in G} f(g^{-1})Q_{i}(g')Q_{i}(g)$ $= \sum_{g \in G} F(g^{-1}) P_i(g'g)$ $= \sum_{\substack{g'' \in G}} f(g'g')^{-1}g') P(g''g') \qquad g'' = g'gg'^{-1}$ 9'g = 9''9' $= \sum_{g'' \in G} F(g'')^{-1} e(g'') e(g'') e(g'')$ 9-1-[91-919] $= f_{i} e_{i}(s')$ $= g'^{-1}g''g'$ [fi, e:(9')]= => fi=> Id by Schur's lemma

to find), take traces $+ \left[\sum_{g \in G} f(g^{-1}) e(g) \right] = \lambda + (Id) = \lambda dim e_i$ $= \sum_{\substack{g \in G \\ g \in G}} f(g^{-1}) \chi_{e_i}(g) = \lambda \dim_{e_i}^{i}$ = $16 | \langle f, \chi_{e_i} \rangle = 0 \Rightarrow \lambda^{-1} = 0 \Rightarrow f_i = 0$ To use this to prove that f=0, we can construct a represention called the <u>regular representation</u> $e_{reg}: G \rightarrow U(C^{161})$ Basis vectors $\{\hat{e}_g, g_GG\}$ $\hat{e}_g \cdot \hat{e}_{g'} = S_{gg'}$

 $e_{reg}(g)\vec{e}_{g'}=\vec{e}_{gg'}$ $\left[\frac{P_{reg}(g)}{hg'} \right]_{hg'} = \begin{cases} 1 & \text{if } h = gg' \\ 0 & \text{otherwse} \end{cases}$ Prez 13 some sun of irreducible representations $\Rightarrow \langle f, \mathcal{X}_{e_{reg}} \rangle = 0$ $f = \sum_{g \in G} f(g^{-1}) \mathcal{C}_{reg}(g)$ f=O by Schwishemma $\tilde{f}\tilde{e}_{E} = \sum_{g \in G} f(g^{-1}) \mathcal{P}_{reg}(g) \tilde{e}_{E}$

$= \sum_{\substack{g \in G \\ g \in G}} f(g^{-1}) \stackrel{>}{\in} g = O$ $\Rightarrow f(g^{-1}) = O \text{for all } g$
-> the irreducible characters span the space of clair functions -> the # of irreps of a group = the # of conjugacy classes in the group
Using Schur's lemma, we can use characters to find explicit projectors anto invariant subspaces Given a reducible representation

$\eta = \bigoplus_{i=1}^{n} n_i e_i$	P: 15 reducible N: P: 15 shorthout for P:0.0P.
maltiplicity of	ni 4ms
$e_i \sim 7$	is a representation of a vector space V= OV: n;
we want to find matrices P_i $P_i \vec{u} = \begin{cases} \vec{u} & \text{if } \vec{u} \in V_i \\ 0 & \text{otherwise} \end{cases}$	s.t. (From schus's hemma) Hamiltonians are block- dia ponal (att Vis)
Takiny inspiration from our p $P_i = \frac{d_{in}R_i}{161} \sum_{ge6} \chi_g$	previous proof: $(g^{-1}) 7(g)$

In our basis where η is block-diagonal $\begin{bmatrix} P_{j}^{ab} & \dim P_{j} \\ \hline IGI & geo \\ \end{bmatrix} \begin{bmatrix} Q_{j} & Q_{j} \\ \hline Q_{j} \end{bmatrix} \oplus \begin{bmatrix} Q_{j} & Q_{j} \\ \hline Q_{j} \end{bmatrix} \oplus \begin{bmatrix} Q_{j} & Q_{j} \\ \hline Q_{j} \end{bmatrix} \oplus \begin{bmatrix} Q_{j} & Q_{j} \\ \hline Q_{j} \end{bmatrix} \oplus \begin{bmatrix} Q_{j} & Q_{j} \\ \hline Q_{j} \end{bmatrix} \oplus \begin{bmatrix} Q_{j} & Q_{j} \\ \hline Q_{j} \end{bmatrix} \oplus \begin{bmatrix} Q_{j} & Q_{j} \\ \hline Q_{j} \end{bmatrix} \oplus \begin{bmatrix} Q_{j} & Q_{j} \\ \hline Q_{j} \end{bmatrix} \oplus \begin{bmatrix} Q_{j} & Q_{j} \\ \hline Q_{j} \end{bmatrix} \oplus \begin{bmatrix} Q_{j} & Q_{j} \\ \hline Q_{j} \end{bmatrix} \oplus \begin{bmatrix} Q_{j} & Q_{j} \\ \hline Q_{j} \end{bmatrix} \oplus \begin{bmatrix} Q_{j} & Q_{j} \\ \hline Q_{j} \end{bmatrix} \oplus \begin{bmatrix} Q_{j} & Q_{j} \\ \hline Q_{j} \end{bmatrix} \oplus \begin{bmatrix} Q_{j} & Q_{j} \\ \hline Q_{j} \end{bmatrix} \oplus \begin{bmatrix} Q_{j} & Q_{j} \\ \hline Q_{j} \end{bmatrix} \oplus \begin{bmatrix} Q_{j} & Q_{j} \\ \hline Q_{j} \end{bmatrix} \oplus \begin{bmatrix} Q_{j} & Q_{j} \\ \hline Q_{j} \end{bmatrix} \oplus \begin{bmatrix} Q_{j} & Q_{j} \\ \hline Q_{j} \end{bmatrix} \oplus \begin{bmatrix} Q_{j} & Q_{j} \\ \hline Q_{j} \end{bmatrix} \oplus \begin{bmatrix} Q_{j} & Q_{j} \\ \hline Q_{j} \end{bmatrix} \oplus \begin{bmatrix} Q_{j} & Q_{j} \\ \hline Q_{j} \end{bmatrix} \oplus \begin{bmatrix} Q_{j} & Q_{j} \\ \hline Q_{j} \end{bmatrix} \oplus \begin{bmatrix} Q_{j} & Q_{j} \\ \hline Q_{j} \end{bmatrix} \oplus \begin{bmatrix} Q_{j} & Q_{j} \\ \hline Q_{j} \end{bmatrix} \oplus \begin{bmatrix} Q_{j} & Q_{j} \\ \hline Q_{j} \end{bmatrix} \oplus \begin{bmatrix} Q_{j} & Q_{j} \\ \hline Q_{j} \end{bmatrix} \oplus \begin{bmatrix} Q_{j} & Q_{j} \\ \hline Q_{j} \end{bmatrix} \oplus \begin{bmatrix} Q_{j} & Q_{j} \\ \hline Q_{j} \end{bmatrix} \oplus \begin{bmatrix} Q_{j} & Q_{j} \\ \hline Q_{j} \end{bmatrix} \oplus \begin{bmatrix} Q_{j} & Q_{j} \\ \hline Q_{j} \end{bmatrix} \oplus \begin{bmatrix} Q_{j} & Q_{j} \\ \hline Q_{j} \end{bmatrix} \oplus \begin{bmatrix} Q_{j} & Q_{j} \\ \hline Q_{j} \end{bmatrix} \oplus \begin{bmatrix} Q_{j} & Q_{j} \\ \hline Q_{j} \end{bmatrix} \oplus \begin{bmatrix} Q_{j} & Q_{j} \\ \hline Q_{j} \end{bmatrix} \oplus \begin{bmatrix} Q_{j} & Q_{j} \\ \hline Q_{j} \end{bmatrix} \oplus \begin{bmatrix} Q_{j} & Q_{j} \\ \hline Q_{j} \end{bmatrix} \oplus \begin{bmatrix} Q_{j} & Q_{j} \\ \hline Q_{j} \end{bmatrix} \oplus \begin{bmatrix} Q_{j} & Q_{j} \\ \hline Q_{j} \end{bmatrix} \oplus \begin{bmatrix} Q_{j} & Q_{j} \\ \hline Q_{j} \end{bmatrix} \oplus \begin{bmatrix} Q_{j} & Q_{j} \\ \hline Q_{j} \end{bmatrix} \oplus \begin{bmatrix} Q_{j} & Q_{j} \\ \hline Q_{j} \end{bmatrix} \oplus \begin{bmatrix} Q_{j} & Q_{j} \\ \hline Q_{j} \end{bmatrix} \oplus \begin{bmatrix} Q_{j} & Q_{j} \\ \hline Q_{j} \end{bmatrix} \oplus \begin{bmatrix} Q_{j} & Q_{j} \\ \hline Q_{j} \end{bmatrix} \oplus \begin{bmatrix} Q_{j} & Q_{j} \\ \hline Q_{j} \end{bmatrix} \oplus \begin{bmatrix} Q_{j} & Q_{j} \\ \hline Q_{j} \end{bmatrix} \oplus \begin{bmatrix} Q_{j} & Q_{j} \\ \hline Q_{j} \end{bmatrix} \oplus \begin{bmatrix} Q_{j} & Q_{j} \\ \hline Q_{j} \end{bmatrix} \oplus \begin{bmatrix} Q_{j} & Q_{j} \\ \hline Q_{j} \end{bmatrix} \oplus \begin{bmatrix} Q_{j} & Q_{j} \\ \hline Q_{j} \end{bmatrix} \oplus \begin{bmatrix} Q_{j} & Q_{j} \\ \hline Q_{j} \end{bmatrix} \oplus \begin{bmatrix} Q_{j} & Q_{j} \\ \hline Q_{j} \end{bmatrix} \oplus \begin{bmatrix} Q_{j} & Q_{j} \\ \hline Q_{j} \end{bmatrix} \oplus \begin{bmatrix} Q_{j} & Q_{j} \\ \hline Q_{j} \end{bmatrix} \oplus \begin{bmatrix} Q_{j} & Q_{j} \\ \hline Q_{j} \end{bmatrix} \oplus \begin{bmatrix} Q_{j} & Q_{j} \\ \hline Q_{j} \end{bmatrix} \oplus \begin{bmatrix} Q_{j} & Q_{j} \\ \hline Q_{j} \end{bmatrix} \oplus \begin{bmatrix} Q_{j} & Q_{j} \\ \hline Q_{j} \end{bmatrix} \oplus \begin{bmatrix} Q_{j} & Q_{j} \\ \hline Q_{j} \end{bmatrix} \oplus \begin{bmatrix} Q_{j} & Q_{j} \\ \hline Q_{j} \end{bmatrix} \oplus \begin{bmatrix} Q_{j} & Q_{j} \\ \hline Q_{j} \end{bmatrix} \oplus \begin{bmatrix} Q_{j} & Q_{j} \\ \hline Q_{j} \end{bmatrix} \oplus \begin{bmatrix} Q_{j} & Q_{j} \\ \hline Q_{j} \end{bmatrix} \oplus \begin{bmatrix} Q_{j} & Q_{j} \\ \hline Q_{j} \end{bmatrix} \oplus \begin{bmatrix} Q_{j} & Q_{j} \\ \hline Q_{j} \end{bmatrix} \oplus \begin{bmatrix} Q_{j} & Q$ = dim Ri 161 gebic P; (g-1) P; (g) = dune: Z (1) (1) (1) Sij Sac Sbc = $\bigoplus S_{ij} S_{ab}$ => P_i projects onto the irreducible representation R_i

With the group theory done, bets this back	to Physics;
Lets look at electrons in solids (ignoring interact.	nns for new)
rome potential $V(\hat{x})$	· · · · · · · · · · · · · · · · · · ·
Hamiltonian $H = \frac{1}{2M} + V(\tilde{x})$	(-)
Symmetries of H are a subgroups of	$\mathbb{H}(3) = \mathbb{I}\mathbb{I}\mathbb{I}\mathbb{V}^{3}$
$V(g \hat{x}) = V(\hat{x})$	translations porchating in 3D and netherly
the grap G of rigid symmetries of a 3D rrysto	1) is called a
Space group GCE(3)	· · · · · · · · · · · · · · · · · ·

The key they that defines a crystal is discrete translation symetry: Every space group G has a subgroup $T = \{ \{ E \mid n_1 \hat{e}_1 + n_2 \hat{e}_2 + n_3 \hat{e}_3 \}, n_1 \in \mathbb{Z} \}$ T-the Bravais lattice of the space group { e, e, e, e, e} - primitive lattice vectors (not unique) $V(\dot{x}+n_1\dot{e}_1+n_2\dot{e}_2+n_3\dot{e}_3)=V(\dot{x})$ $\vec{e}_1 = (\alpha, 0)$ $\vec{e}_1 = (0, \alpha)$ Ex ZD

							·• ·	10			r .	• •															
			• •		• •				• •	•	-	!					• •			• •					• •		• •
			• •														• •			• •					• •		• •
													. .														
							· •	."					• .														
			• •				• •		• •						• •		• •			• •					• •		• •
																				• •							• •
	• •		• •				• •		• •								• •			• •					• •		• •
	• •		• •				• •		• •						• •		• •			• •					• •		• •
	• •		• •				• •		• •						• •		• •			• •					• •		• •
	• •		• •				• •		• •						• •		• •			• •					• •		• •
	• •		• •				• •		• •						• •		• •			• •					• •		• •
	• •		• •				•		• •			• •					• •		• •	• •					• •		• •
	• •		• •				•		• •			• •					• •		• •	• •					• •		• •
	• •		• •				•		• •			• •					• •		• •	• •					• •		• •
	• •		• •				• •		• •								• •		• •	• •	• •		• •		• •		• •
	• •		• •				• •		• •								• •		• •	• •	• •		• •		• •		• •
	• •		• •				•		• •			• •					• •		• •	• •					• •		• •
	• •		• •	•			•		• •						• •		• •		• •	• •					• •		• •
	• •		• •				•		• •			• •					• •		• •	• •					• •		• •
	• •		• •				•		• •			• •					• •		• •	• •					• •		• •
	• •		• •				•		• •			• •					• •		• •	• •					• •		• •
	• •		• •	•	• •		• •		• •			• •			• •		• •	•		• •					• •		• •
	• •		• •		• •		• •		• •			• •			• •		• •			• •					• •		• •
	• •		• •		• •		• •		• •						• •		• •			• •					• •		• •