Lecture 6 . HD 2 will be pasted $9 / 19$

- Making up lost lective: $9 / 19,9 / 21$ extades 5 , 90 wis

Recap: Characters of representatus

$$
\rho: G \rightarrow U(V)
$$

character of $\rho \quad X_{\rho}: G \rightarrow \mathbb{C}$

$$
\chi_{p}(g)=+r(e(g))
$$

Schur Orthogonality Relations If we have two irreps e_{1}, e_{2} of G

$$
\sum_{g \in G}\left[e_{2}\left(g^{-1}\right)\right]_{\alpha_{\mu}}\left[e_{1}(g)\right]_{\nu \beta}=\left\{\begin{array}{l}
0 \text { f } e_{1} \neq e_{2} \\
\frac{|G|}{d m \rho_{1}} \delta_{\mu \mu} \delta_{\alpha \beta} f e_{1}=\rho_{2}
\end{array}\right.
$$

lets as define an inner product an characters

$$
\left\langle x_{1}, x_{2}\right\rangle=\frac{1}{|\sigma|} \sum_{g \in G} x_{1}^{*}(g) x_{2}(g)=\frac{1}{|\sigma|} \sum_{g G 6} x_{1}\left(g^{-1}\right) x_{2}(g)
$$

If e_{1} and e_{2} are irreducible, then

$$
\left\langle\chi_{e_{1},} \chi_{e_{2}}\right\rangle= \begin{cases}0 & +e_{1} \neq e_{2} \\ 1 & f e_{1} e_{2}\end{cases}
$$

Cequivaleat up to a basis
trans formation
Two final points about characters:

- The irreducible characters form a complete basis for functions nuvasiont under conjugation.
G Given any function $f: G \rightarrow \mathbb{C}$
$f(h)=f\left(g h g^{-1}\right)$ for all gand h
$L_{\text {class function }}$
We have $f=\sum_{e_{e_{n}}} \alpha_{e_{n}} \chi_{e_{n}} \quad \alpha_{e_{n}} \in \mathbb{C}$
$\Rightarrow \#$ of reps of a group $=\#$ of conjugacy
Cayugacy class: Classed

$$
\begin{array}{ll}
g \in G & f \quad G \text { has } N \text { conjugacy } \\
C_{S}=\left\{g^{\prime} g g^{\prime-1} \mid g^{\prime} \in G\right\} & G=C_{1} \cup C_{2} \cup \cdots C_{N}
\end{array}
$$

Then $f_{n}(g)= \begin{cases}1 & \text { if } g \in C_{n} \\ 0 \text { otherwise }\end{cases}$
There's N of $f_{n} \Rightarrow$ there must he N irreducible characters

To prove thus, precede by contradiction suppose $f_{i} G \rightarrow \mathbb{C}$ is a class function, and suppose that
$\left\langle X_{e_{i}}, f\right\rangle=0$ for all irreps P_{i}
than $f=0$

$$
f_{i}=\sum_{g \in G} f\left(g^{-1}\right) e_{i}(g)
$$

this is a matrix be p_{i} is a mar, ix
and $P_{i}\left(g^{\prime}\right) f_{i}=\sum_{g \in G} f\left(g^{-1}\right) e_{i}\left(g^{\prime}\right) e_{i}(g)$

$$
\begin{aligned}
& =\sum_{g \in G} f\left(g^{-1}\right) P_{i}\left(g^{\prime} g\right) \\
& \begin{array}{l}
=\sum_{g^{\prime \prime} \in G} f^{\prime}\left(g^{-1} g^{\prime \prime-1} g^{\prime}\right) \cdot\left(\cdot\left(g^{\prime \prime} g^{\prime}\right) \quad g^{\prime \prime}=g^{\prime} g g^{\prime-1}\right. \\
g^{\prime} g=g^{\prime \prime} g^{\prime}
\end{array} \\
& =\left[\sum_{g^{\prime \prime} \in 6} f\left(g^{\prime \prime}\right)^{-} e_{i}\left(g^{\prime \prime}\right)\right] e_{i}\left(g^{\prime}\right) \\
& g^{-1}=\left[g^{\prime-1} g^{\prime \prime} g^{\prime}\right]^{-1} \\
& =f_{i} e_{i}\left(g^{\prime}\right) \\
& =g^{\prime-1} g^{\prime \prime-1} g^{\prime}
\end{aligned}
$$

$\left[f_{i}, e_{i}\left(s^{\prime}\right)\right]=0 \Rightarrow f_{i}=\lambda$ Id by Schw's hemnn
to ford λ, take traces

$$
\begin{aligned}
& +\pi\left[\sum_{g G G} f\left(g^{-1}\right) e_{i}(g)\right]=\lambda+f(I d)=\lambda \operatorname{dim} e_{i} \\
& =\sum_{g \in 6} f\left(g^{-1}\right) \chi_{e_{i}}(g)=\lambda \operatorname{dim} e_{i} \\
& =|G|\left\langle f, \chi_{R_{i}}\right\rangle=0 \Rightarrow \lambda=0 \Rightarrow f_{i}=0
\end{aligned}
$$

To use this to prove that $f=O$, we con construct a represention called the regular representation

$$
e_{r g g}: G \rightarrow U\left(\mathbb{C}^{\mid 61}\right)
$$

$$
\begin{aligned}
& e_{\text {reg }}(g) \vec{e}_{g^{\prime}}=\vec{e}_{g g^{\prime}} \\
& {\left[e_{\text {reg }}(g)\right]_{h g^{\prime}}= \begin{cases}1 & \text { f } \\
0 & h=g g^{\prime} \\
0 & \text { otherwise }\end{cases} }
\end{aligned}
$$

$\rho_{\text {reg }}$ is some sun of irreducible repersatation

$$
\begin{gathered}
\Rightarrow\left\langle f, x_{e_{\text {ere }}}\right\rangle=0 \\
\tilde{f}=\sum_{g \in 6} f\left(g^{-1}\right) e_{\text {reg }}(g) \quad \tilde{f}=0 \text { by Schw's lemma } \\
\vec{f} \vec{e}_{E}=\sum_{g \in G} f\left(g^{-1}\right) e_{\text {reg }}(g) \vec{e}_{E}
\end{gathered}
$$

$$
\begin{aligned}
&=\sum_{g \in G} f\left(g^{-1}\right) \vec{e}_{g}=0 \\
& \Rightarrow f\left(g^{-1}\right)=0 \text { for all } g
\end{aligned}
$$

\rightarrow He irreducible characters spar the space of class functions
\rightarrow He $\#$ of reps of a group $=$ the $\#$ of conjugacy classes in the group

Using Schur's lemma, we can use characters to fund explicit projector onto invariant subspaces

Given a reducible representation

$$
\eta=\bigoplus_{i} \cap_{i} e_{i} e^{\text {maltiplicity of }} \begin{aligned}
& \rho_{i}
\end{aligned}
$$

P_{i} irreducible
$n_{i} P_{i}$, s shorthand for $\underbrace{\rho_{i} \otimes P O \otimes \theta P_{i}}_{n_{i} \text { tm }^{\prime} S}$
li_{i} in η is a representation a a vector space $V=\otimes V_{i}^{n_{i}}$
we wart to find matrices P_{1} sot.

$$
P_{i} \vec{u}=\left\{\begin{array}{l}
\vec{u}+\vec{u} \in V_{i} \\
0 \text { others te }
\end{array}\right.
$$

(From sher's len ma,
Haniltoragns are blockdagorial int V_{i}^{\prime} 's)

Taking inspiration from our previous proof:

$$
P_{i}=\frac{\operatorname{dim}_{i}}{|\sigma|} \sum_{g \in 6} x_{p}\left(g^{-1}\right) \eta(g)
$$

In our basis where η is block-diagonal

$$
\begin{aligned}
& {\left[P_{i}\right]^{a b}=\frac{d_{m} P_{i}}{|\sigma|} \sum_{g \in \theta} X_{p_{i}}\left[g^{-1}\right) \bigoplus_{j} \rho_{j}^{a b}(g)} \\
& =\frac{\operatorname{dim} P_{i}}{|\sigma|} \sum_{g \in G \dot{ }} \sum_{i} \rho_{i}^{c c}\left(g^{-1}\right) \rho_{j}^{a b}(g) \\
& =\frac{d \mu e_{i}}{1 \sigma X} \sum_{c} \prod_{j}\left(\frac{1|6|}{d \sin e^{2}}\right) \delta_{i j} \delta_{a c} \delta_{b c} \\
& =\bigoplus_{j} \delta_{i j} \delta_{a b} \Rightarrow P_{i} \text { projects auto the }
\end{aligned}
$$

With the group theory dove, lets twin back to Physics;
Lets look at electrons in solids (igronig interactions for new) canc potential $V(\vec{x})$
Hamiltonian $H=\frac{p^{2}}{2 m}+V(\vec{x})$
Symnetires of H are a subgroup of $\mathbb{E}(3)=1 R^{3} \times O(3)$

$$
V(g \vec{x})=V(\vec{x})
$$

$$
\begin{gathered}
\text { tachations nictates } \\
\text { andaftery }
\end{gathered}
$$

the gran G of rigid symmetrise of a 3D reysial is called a Space group $G \subset \mathbb{E}(3)$

The key thy that defines a crystal is discrete translation symmetry: Every space group G has a subgroup

$$
T=\left\{\left\{E \mid n_{1} \vec{e}_{1}+n_{2} \vec{e}_{2}+n_{3} \vec{e}_{3}\right\}, n_{1} \in \mathbb{Z}\right\}
$$

T- the Bravals lattice of the space group $\left\{\vec{e}_{1}, \vec{e}_{2}, \vec{e}_{3}\right\}$ - primitive lattice vectors (not unique)

$$
V\left(\vec{x}+n_{1} \vec{e}_{1}+n_{2} \vec{e}_{2}+n_{3} \vec{e}_{3}\right)=V(\vec{x})
$$

