Lecture 9+10 Recap: Space groups
Symmorphic; $G=T \propto \bar{G}$

$$
\begin{aligned}
& -\overline{G C G} \\
& -73 \text { in } 3 D
\end{aligned}
$$

- Symbols have the form [letter][[p scrump $\left.{ }_{\text {s pol }}\right]$

Nonsymmorphic

$$
\begin{aligned}
& -\bar{G} \not \subset G \\
& \left.-G=T \cup T\left\{\bar{g}_{1} \mid \vec{d}_{1}\right\} \cup T\left\{\bar{g}_{2} \mid \vec{d}_{2}\right\}, \ldots \cup T \bar{g}_{n=1} \mid \vec{d}_{\alpha-1}{ }_{2}\right)
\end{aligned}
$$

at least one \vec{d}_{1} must be a fractional translation

- G typically contains screw notations or glide mirrors
-153 in 3D
- H-M symbols have subscripts to denote screws, and letters to deategides
Aside: Chiral crystals
crystal stincture has a handedness: given a chiral crystal, we con reverse orientation to get a different crystal Ex

vs

The key point. Chiral materials have no orientationreversing symmetries
Orientation for a crystal $\vec{e}_{1}, \vec{e}_{2}, \vec{e}_{3}$ primitive lattice \quad vectors $\quad \operatorname{sign}\left[\vec{e}_{1} \cdot\left(\vec{e}_{2} \times \vec{e}_{3}\right)\right]= \begin{cases}+1 & \text { Right -handed cord System } \\ -1 & \text { left handed coordinate system }\end{cases}$

- All rotations preserve orientation $(\hat{n}, \theta) \rightarrow R_{\hat{n}}(\theta) 3 \times 3$ rotation matrix

$$
\begin{aligned}
& R_{\hat{n}}(\theta) \vec{e}_{1} \cdot\left(\hat{R}_{\hat{n}}(\theta) \vec{e}_{\imath} \times R_{\hat{n}}(\theta) \vec{e}_{3}\right)=\operatorname{det} R_{n}(\theta) \vec{e}_{1} \cdot\left(\vec{e}_{i} \times \vec{e}_{3}\right) \\
& \operatorname{det} R_{\hat{1}}(\theta)=+1 \text { for rotations }
\end{aligned}
$$

- spatial inversion reverses orientation $I \vec{e}_{i}=-\vec{e}_{i}$

$$
I \vec{e}_{1} \cdot\left(I \vec{e}_{2} \times \vec{e}_{3}\right)=-\vec{e}_{1} \cdot\left(\vec{e}_{2} \cdot \vec{e}_{3}\right)
$$

- mirror sgumetines revise orientation (Ix twofold rotation)
\Rightarrow Chiral materials crystallize in space groups w/ translations, rotations, and screw rotations

65 of these Soncke space groups
Exande in 2D

inversion: HM symbol I cotanverstions $I C_{3}, I C_{4} \frac{I C_{6}}{\frac{1}{6}}$
Pu

$\binom{$ in $2 D$ only mirrors \& glides }{ reverse orientation }

Lets use space groups to study band structure

$$
\begin{aligned}
& H\left|\Psi_{n k}\right\rangle=E_{n k}\left|\psi_{n k}\right\rangle \\
& U_{\vec{t}}\left|\Psi_{n k}\right\rangle=e^{-i k \cdot \vec{t}}\left|\psi_{n k}\right\rangle
\end{aligned}
$$

Bloch's theorem
What about ether symmetries $\{\vec{g} \mid \vec{d}\} \in G$
let $U_{\{\bar{g} \mid \hat{d}\}}$ be the unitary operator that implants $\{\bar{g} l \vec{d}\}$ on our Hilbert space

$$
\left[U_{\{\bar{g} \mid \vec{d}\}}, H\right]=0
$$

consider $\{E \mid \vec{t}\}\{\bar{g} \mid \vec{d}\}=\{\bar{g} \mid \vec{t}+\vec{d}\}$

$$
\begin{aligned}
& =\{\bar{g} \mid \vec{d}\}\left\{E \mid g^{-1} t\right\} \\
& U_{\vec{t}} U_{\{\bar{g} \mid \vec{d}\}}\left|\psi_{n k}\right\rangle=U_{\{\bar{g} \mid \vec{d}\}} U_{\left\{E \mid \bar{g}^{-1 \vec{E}}\right\}}\left|\psi_{n \vec{k}}\right\rangle \\
& \overline{\{\bar{g} \mid \vec{d} \vec{x}=\bar{g} \vec{x}+\vec{d}}=U_{\{\bar{g} \mid \vec{d}\}}\left(e^{-i \vec{k} \cdot\left(\bar{g}^{-1} t\right)}\right)\left|\psi_{n \vec{k}}\right\rangle \\
& \{\bar{g} \mid \vec{d}\} \vec{k} \equiv \bar{g} \vec{k} \\
& =e^{-i \vec{k} \cdot(\vec{g}-\vec{t})} U_{|\vec{g}| \vec{d} \mid}\left|\psi_{n \vec{k}}\right\rangle \\
& \vec{k} \cdot\left(\bar{g}^{-1} t\right)=(\bar{g} k) \cdot\left(\bar{g} \bar{g}^{-1} \vec{t}\right)
\end{aligned}
$$

$$
\begin{aligned}
& =(\bar{g} k) \cdot \vec{t} \\
& U_{\vec{t}}\left[U_{\{\bar{\sigma} \mid \vec{d}\}}\left|\psi_{n k}\right\rangle\right]=e^{-i \vec{g} k \cdot \vec{t}}\left[U_{\{\bar{g} \mid \vec{d}\}}\left|\psi_{n k}\right\rangle\right] \\
& \begin{aligned}
& \Rightarrow U_{\{\bar{\sigma} \mid \bar{d}\}} \mid \psi_{n} \vec{l}_{i} \\
& \text { of } T
\end{aligned} \\
& U_{\{\bar{g} \mid \vec{d}\}}\left|\psi_{N \vec{k}}\right\rangle=\sum_{m}\left|\psi_{m \bar{g} k}\right\rangle\left\langle\psi_{m \bar{g} k}\right| \|_{\{\bar{\rho} \mid \vec{d}\}}\left|\psi_{n k}\right\rangle
\end{aligned}
$$

$$
\begin{aligned}
& \left.\left\{\left|\psi_{n k}\right\rangle\right\} \rightarrow\left\{\left|\psi_{m \vec{g} k}\right\rangle\right\} \equiv \sum_{m}\left|\psi_{m \bar{g} k}\right\rangle{\underset{c}{m}}_{\vec{k}}^{B_{n}}(\langle\bar{g} \mid \vec{j}\rangle)\right) \\
& \text { "Sewing matrix" for the } \\
& \text { symutry }\{\bar{g} \mid \vec{d}\}
\end{aligned}
$$

If $\vec{g} k=\vec{k}+\vec{b}$ for \vec{b} a reciprocal lattice vector then $e^{-i \vec{g} k \cdot \vec{t}}=e^{-i(\vec{k}+\vec{b}) \cdot t}=e^{-i \vec{k} \cdot \vec{t}} e^{-i \vec{b} \cdot \vec{t}}$

$$
\begin{aligned}
& =e e^{e}-2 \pi r^{1} \\
& =e^{-\vec{k} \cdot t} e^{-2 \pi n^{2}}
\end{aligned}
$$

Then $B_{m n}^{k}(\{\bar{g} \mid \vec{d}\})$ is a map between State at the same \vec{k}

Gran \vec{k} we can define

$$
G_{\vec{k}}=\left\{\{\bar{g} \mid \vec{d}\} \in G \left\lvert\, \vec{g} \vec{k} \equiv \vec{k}\left(\begin{array}{c}
\text { (modulo reciprocal } \\
\text { vector tier }
\end{array}\right\}\right.\right.
$$

$G_{\vec{i}}$ is called the little group of \vec{k} $\left\{B_{m n}^{k}\left(g_{l}\right) \mid g_{l} \in G_{k}\right\}$ form a representation of the lithe group
Schur's lemmai states $\left\{\left|\psi_{\text {nu: }}\right\rangle\right\}$ tranformin representations of G_{L} and states in the save irrep
of G_{k} are degenerate,
Lets look at an example: $\int^{P 432}$

$\vec{e}_{1}=a \hat{x} \quad$ reciprocal lathe vector $\vec{b}_{1}=\frac{2 \pi}{a} \hat{x}$

$$
\begin{array}{ll}
\vec{e}_{2}=a \hat{y} & \rightarrow \\
\vec{e}_{3}=a \hat{z} & \vec{b}_{2}=\frac{2 \pi}{a} \hat{y} \\
\vec{b}_{3}=2 \pi / a \hat{z}
\end{array}
$$

(1) lets take $\vec{k}=\vec{O}$ (known as $\Gamma)$ if $\{\bar{g} \mid \vec{j}\} \in G \quad \bar{g} \vec{k}=\vec{k}=0$
every ehement at σ heaves T invarat

$$
G_{\Gamma}-G
$$

$$
\begin{aligned}
& \text { (2) } \vec{k}=\frac{1}{2} \overrightarrow{b_{1}}+\frac{1}{2} \vec{b}_{2}+\frac{1}{2} \overrightarrow{b_{3}} \rightarrow\left(\frac{1}{2}, \frac{1}{2}, \frac{1}{2}\right)=R \\
& C_{d z} ; \$ \\
& P 432=\left\langle T, C_{4 z}, C_{3,111}\right\rangle \\
& z_{0}^{R} \\
& \underset{y \rightarrow-x}{\substack{y \rightarrow-x}} \quad C_{3,11}\left(\frac{1}{2}, \frac{1}{2}, \frac{1}{2}\right)=\left(\frac{1}{2}, \frac{1}{2}, \frac{1}{2}\right) \\
& \underset{z \rightarrow z}{y \rightarrow-x} \quad C_{q z}\left(\frac{1}{2}, \frac{1}{2}, \frac{1}{2}\right)=\left(\frac{1}{2},-\frac{1}{2}, \frac{1}{2}\right)=\left(\frac{1}{2}, \frac{1}{2}, \frac{1}{2}\right)-\vec{b}_{2} \\
& G_{R} \simeq G
\end{aligned}
$$

(3) $\vec{k}=k_{1} \vec{b}_{1}+k_{2} \vec{b}_{2}+k_{3} \vec{b}_{3} \quad k_{1} \neq k_{2} \neq k_{3} \begin{gathered}\text { each random martional } \\ \text { numbers }\end{gathered}$ $G_{\Gamma}=T$ labelled as GP (geneal position)
All info can be found in kvec an the BIlbao Server
Representations of little groups:
$T \nabla G_{k}$ for every $k \rightarrow$ little groups ore isomorphic to spare grenps
Two cases
(1) G_{k} is a symmorphic Space group
(2) G_{k} is a nansymmorphic space group \bar{G}_{k}
\rightarrow Easy $g_{k} \in G_{k}$ ca be written $g_{k}=\{E \mid \vec{t}\}\left\{\left.\frac{\dot{V}}{g} \right\rvert\, 0\right\}$
if ρ is a representation of G_{k}

$$
\begin{aligned}
\rho\left(g_{k}\right) & =e(\{E \mid \vec{t}\}) \rho(\{\bar{g} \mid 0)) \\
& =e^{-i \vec{k} \cdot \vec{t}} \rho(\{\bar{g} \mid 0\})
\end{aligned}
$$

given a representation p of G_{k} we get a representation η of $\quad \bar{G}_{k}=G_{k} / \tau$

$$
\eta(\bar{g})=\rho(\{\bar{g} \mid 0\})
$$

given a representation η of \bar{G}_{l} we con construct a represutation e of G_{k}

For symmophc little groups $\sigma_{6,}$ representations of G_{k} are deterred by point group repersutations of $\bar{G}_{l}=G_{u} / T$ (little cograpp)
(2) G_{k} nonsymmorphic $-\left\{\bar{g}_{i} \mid \vec{d}_{j}\right\}$ where \vec{d}_{i} is a fractional lattice traslatien

$$
\begin{aligned}
& \left\{\bar{g}_{1} \mid \vec{d}_{1}\right\}\left\{\bar{g}_{2} \mid \vec{d}_{2}\right\}=\{E \mid \vec{t}\}\left\{\bar{g}_{3} \mid \overrightarrow{d_{3}}\right\} \quad \bar{g}_{1} \bar{g}_{2}=\bar{g}_{3} \\
& \left(E x ;\left\{C_{2 z} \left\lvert\, \frac{1}{2} \hat{z}\right.\right\}\left\{C_{2 z} \left\lvert\, \frac{1}{2} \hat{z}\right.\right\}=\{E \mid \hat{z}\}\right)
\end{aligned}
$$

f ρ is a representation of G_{l}

$$
\rho\left(\left\{\bar{g}_{1} \mid \vec{d}_{1}\right\}\right) \rho\left(\left(\bar{g}_{l} \mid \vec{d}_{2}\right)\right)=e^{-i \vec{k} \cdot \vec{t}} \rho\left(\left\{\vec{g}_{3} \mid \vec{d}_{3}\right\}\right){ }_{-i \vec{k} \cdot \vec{t}}
$$

this defines 1 a represent ion of an extension of $\frac{3}{G_{l}}$ by $e^{-i k}$
Example: $P 2_{1}$

$$
\begin{aligned}
& \vec{e}_{3}=c \hat{z} \\
& \left\{C_{2 z} \left\lvert\, \frac{1}{2} \vec{e}_{3}\right.\right\}
\end{aligned}
$$

(1) T pointi $\vec{k}=0 \quad G_{\Gamma}=P 2_{1}$

$$
\begin{aligned}
& \text { ff } \left.\rho_{\Gamma} \text { is an irep of } G_{\tau} \rho_{\Gamma}(\{E \mid \vec{t}\})\right)=e=\begin{array}{c}
=0 \cdot \vec{t} \\
=I
\end{array} \\
& e_{r}\left(\left\{C_{2 z} \left\lvert\, \frac{1}{i} \vec{e}_{3}\right.\right\}\right) e_{r}\left(\left\{C_{2 z} \mid \vec{e}_{3} \vec{e}_{3}\right\}\right)=e_{r}\left(\left\{E \mid \vec{e}_{3}\right\}\right) \\
& =1 \\
& \rightarrow \text { at } T \text {, irreps of the } 1 \text { lithe } \\
& =\rho_{r}(\{E \mid \vec{O}\})
\end{aligned}
$$

Sroup con always be determes for \bar{G}

What about $\vec{k}=\frac{1}{2} \vec{b}_{3} \quad$ roduced coordnates $\left(0,0, \frac{1}{2}\right) \quad[Z]$

$$
\begin{aligned}
& G_{z}=G \quad e_{z}(\{E \mid \vec{t}\})=e^{-i \frac{1}{2} \vec{b}_{3} \cdot \vec{t}}=e^{-i \pi t_{3}} \\
& e_{z}\left(\left\{C_{2 z} \left\lvert\, \frac{1}{2} e_{3}\right.\right\}\right)^{2}=e_{z}\left(\left\{E \mid \vec{e}_{3}\right\}\right)=-工\left(=e^{-i \pi}\right) \\
& \left.\frac{1}{2} b_{3} \vec{e}_{3}=\frac{1}{i}\left(l_{\pi}\right)=\pi \overline{e_{1}}\right)
\end{aligned}
$$

ρ	E	$\{[\mid \vec{t}\}$	$\left\{c_{a} \mid i_{0} \dot{e}_{3}\right\}$
z_{1}	+1	$e^{-i t_{3}}$	$+i$
z_{2}	+1	$e^{-i \pi t_{3}}$	$-i$

Extended group

$$
\begin{aligned}
& E, C_{2}, x \\
& x^{2}=E \\
& C_{2}^{2}=x
\end{aligned}
$$

