Elements of a Scientific Paper:
The Abstract and Introduction
Key Components of a Scientific Paper

1. Abstract - Concise summary of motivation, procedure, preliminary results, and research plans

2. Introduction - Motivation for research, necessary background information for reader, important previous results, preview of findings.

3. Methods and Procedures - Description of experimental or theoretical methods used or planned, methods for data acquisition and analysis. Include figures/diagrams to convey apparatus or procedures.

4. Results and Discussion – Description/discussion of preliminary results obtained; discussion of models/hypotheses to be tested. Include figures showing any preliminary data.

5. References – Include references to the relevant scientific literature.
Effective Scientific Abstracts

One of the first, and most important, things you will need to write as a grad student, postdoc, etc., is a scientific abstract!

Scientific abstracts* are written for:

- Conferences and workshops (e.g., APS April and March Meetings) you plan to attend
- Proposals you will write
- Journal articles you will write
- Prelim papers and theses you will write
- Seminars and colloquia you will give

*Also known as project summaries, whitepapers, etc.
Effective Scientific Abstracts

The abstract provides an overview of the motivations, methods, and results in your paper or presentation.

One function of an abstract is to “advertise” your paper or presentation:

Because the abstract is generally the first thing the reader will see, the quality of your abstract helps determine whether the reader will read your paper or attend your talk!

Because abstracts are often published or available online, abstracts also function as a permanent record of your paper or presentation:

Published abstract booklets
Talk abstracts posted on-line
Paper abstracts available on INSPEC, SCOPUS, WOS,…
Effective Scientific Abstracts

The abstract provides an overview of the motivations, methods, and results in your paper or presentation.

In the form of “whitepapers” or “project summaries”, your abstract may determine if you get funding for your proposal or even if your proposal is considered at all for possible funding!

Key Point: Because the abstract is the most succinct expression of what you did, why you did it, and what was important about what you did, writing the abstract first will help you organize your thoughts so you can identify the focus of your paper, presentation, or proposal. It will also help you organize your outline.
Scientific Abstracts

The abstract gives the reader an overview of the key motivations, methods, and results of the proposed research.

The abstract should contain (in this order):

1. A brief statement of the motivations and/or issues associated with the research
2. A short description of the methods used
3. A summary of the key results obtained
4. A statement of the implications of the key results
Optical Response of Relativistic Electrons in the Polar BiTeI Semiconductor

J. S. Lee,1,* G. A. H. Schober,2,3 M. S. Bahramy,4 H. Murakawa,5 Y. Onose,2,5 R. Arita,2,4
N. Nagaosa,2,4 and Y. Tokura1,2,4,5

The transitions between the spin-split bands by spin-orbit interaction are relevant to many novel phenomena such as the resonant dynamical magnetoelectric effect and the spin Hall effect. We perform optical spectroscopy measurements combined with first-principles calculations to study these transitions in the recently discovered giant bulk Rashba spin-splitting system BiTeI. Several novel features are observed in the optical spectra of the material including a sharp edge singularity due to the reduced dimensionality of the joint density of states and a systematic doping dependence of the intraband transitions between the Rashba-split branches. These confirm the bulk nature of the Rashba-type splitting in BiTeI and manifest the relativistic nature of the electron dynamics in a solid.
Example Scientific Abstract

Optical Response of Relativistic Electrons in the Polar BiTeI Semiconductor

J. S. Lee, 1,* G. A. H. Schober, 2,3 M. S. Bahramy, 4 H. Murakawa, 5 Y. Onose, 2,5 R. Arita, 2,4 N. Nagaosa, 2,4 and Y. Tokura 1,2,4,5

The transitions between the spin-split bands by spin-orbit interaction are relevant to many novel phenomena such as the resonant dynamical magnetoelectric effect and the spin Hall effect. We perform optical spectroscopy measurements combined with first-principles calculations to study these transitions in the recently discovered giant bulk Rashba spin-splitting system BiTeI. Several novel features are observed in the optical spectra of the material including a sharp edge singularity due to the reduced dimensionality of the joint density of states and a systematic doping dependence of the intraband transitions between the Rashba-split branches. These confirm the bulk nature of the Rashba-type splitting in BiTeI and manifest the relativistic nature of the electron dynamics in a solid.
Optical Response of Relativistic Electrons in the Polar BiTeI Semiconductor

J. S. Lee,1,* G. A. H. Schober,2,3 M. S. Bahramy,4 H. Murakawa,5 Y. Onose,2,5 R. Arita,2,4
N. Nagaosa,2,4 and Y. Tokura1,2,4,5

The transitions between the spin-split bands by spin-orbit interaction are relevant to many novel phenomena such as the resonant dynamical magnetoelectric effect and the spin Hall effect. We perform optical spectroscopy measurements combined with first-principles calculations to study these transitions in the recently discovered giant bulk Rashba spin-splitting system BiTeI. Several novel features are observed in the optical spectra of the material including a sharp edge singularity due to the reduced dimensionality of the joint density of states and a systematic doping dependence of the intraband transitions between the Rashba-split branches. These confirm the bulk nature of the Rashba-type splitting in BiTeI and manifest the relativistic nature of the electron dynamics in a solid.
Optical Response of Relativistic Electrons in the Polar BiTeI Semiconductor

J. S. Lee, 1,* G. A. H. Schober, 2,3 M. S. Bahramy, 4 H. Murakawa, 5 Y. Onose, 2,5 R. Arita, 2,4 N. Nagaosa, 2,4 and Y. Tokura 1,2,4,5

The transitions between the spin-split bands by spin-orbit interaction are relevant to many novel phenomena such as the resonant dynamical magnetoelectric effect and the spin Hall effect. We perform optical spectroscopy measurements combined with first-principles calculations to study these transitions in the recently discovered giant bulk Rashba spin-splitting system BiTeI. Several novel features are observed in the optical spectra of the material including a sharp edge singularity due to the reduced dimensionality of the joint density of states and a systematic doping dependence of the intraband transitions between the Rashba-split branches. These confirm the bulk nature of the Rashba-type splitting in BiTeI and manifest the relativistic nature of the electron dynamics in a solid.

Brief summary of key results
Optical Response of Relativistic Electrons in the Polar BiTeI Semiconductor

J. S. Lee, 1,* G. A. H. Schober, 2,3 M. S. Bahramy, 4 H. Murakawa, 5 Y. Onose, 2,5 R. Arita, 2,4
N. Nagaosa, 2,4 and Y. Tokura 1,2,4,5

The transitions between the spin-split bands by spin-orbit interaction are relevant to many novel phenomena such as the resonant dynamical magnetoelectric effect and the spin Hall effect. We perform optical spectroscopy measurements combined with first-principles calculations to study these transitions in the recently discovered giant bulk Rashba spin-splitting system BiTeI. Several novel features are observed in the optical spectra of the material including a sharp edge singularity due to the reduced dimensionality of the joint density of states and a systematic doping dependence of the intraband transitions between the Rashba-split branches. These confirm the bulk nature of the Rashba-type splitting in BiTeI and manifest the relativistic nature of the electron dynamics in a solid.

Brief statement of implications of results
Celia Elliott’s Abstract Recipe

Generate your abstract by answering the following questions, in one or two sentences each:

- What problem did you study and why is it important?
- What methods did you use?
- What were your principal results?
- What conclusions can you draw from your results, or what are the implications of your results?

Make your sentences as specific and quantitative as possible!!
More Advice from Celia

Control the length of your abstract by controlling the length of your answers to the four questions, NOT by omitting any of the answers:

Short abstract (~100 word, e.g., *Phys. Rev. Lett.* abstract):
one-sentence answers

Longer abstract (~200 word, e.g., *Phys. Review* abstract):
2-3 sentence answers

One-page abstract (e.g., proposal project summary):
one paragraph answers
Additional Advice on the Abstract

Your scientific abstract:

Should involve well-developed, grammatical sentences and paragraphs

Don’t take grammatical shortcuts just because it’s an abstract!

Should be understandable by a non-expert audience

 e.g., avoid using specialized terms

Should be able to stand alone from the paper

 Don’t refer to figures in paper
 Don’t include references
 Define all acronyms

Should NOT contain complex equations, figures, tables

Should NOT contain information NOT in the paper
The Introduction

In the introduction, you provide the basic motivations for the proposed work, give necessary background so the non-expert reader can understand the research, and preview the essential results of the proposed work.

Elements of an Effective Introduction

Big Picture: State the “big picture” problem being investigated.

Motivations: Describe the goals and significance of the research, i.e., why is the research worth doing?

Background: Provide (concisely) relevant background material so that non-expert readers can appreciate the research problem and its motivation. This would include previous related research, relevant theories, and unanswered questions that motivate the need for your work.

Preview of Results: Provide (concisely) a preview of the key results and conclusions of the paper.
WRITING SUCCESSFUL MANUSCRIPTS FOR PHYSICAL REVIEW LETTERS

Saad E. Hebboul *

The American Physical Society, Ridge, NY

PART 1 of 2

* Email: hebboul@aps.org

To see full lecture, go to: http://physics.illinois.edu/careers-seminar/UIUC_PRL_Workshop_Hebboul_Pt1.pdf
INTRODUCTION FOR LETTERS

Consists of three crucial parts ...

BACKGROUND or SURVEY

PHYSICAL MOTIVATION

IN THIS LETTER (Contribution)

... that form a single coherent story.

Editor Saad Hebboul: http://physics.illinois.edu/careers-seminar/UIUC_PRL_Workshop_Hebboul_Pt1.pdf
Information in the Introduction is Generally Organized in an “Inverted Pyramid” Structure

‘Big Picture’ Motivations of Research Area

Specific Motivations of Your Research

Beginning of Introduction

End of Introduction
Observation of Spin Correlation in $t\bar{t}$ Events from pp Collisions at $\sqrt{s} = 7$ TeV Using the ATLAS Detector

The top quark was discovered in 1995 [1,2] at the Tevatron proton-antiproton collider. The lifetime of the top quark is at least an order of magnitude shorter than the time scale for strong interactions, implying that the top quark decays before hadronization [3–7]. Therefore the spin of the top quark at production is transferred to its decay products and can be measured directly via their angular distributions [4]. While the polarization of t and \bar{t} quarks in a hadronically produced $t\bar{t}$ sample is predicted to be very small, their spins are predicted to be correlated [8–10]. In this Letter the hypothesis that the correlation of the spin of top and antitop quarks in $t\bar{t}$ events is as expected in the standard model (SM), as opposed to the hypothesis that they are uncorrelated, is tested. This tests the precise predictions of $t\bar{t}$ pair production and of top quark decay, which is expected to occur before its spin is flipped by the strong interaction [9–13]. Many scenarios of new physics beyond the SM predict different spin correlations while keeping the $t\bar{t}$ production cross section within experimental and theoretical bounds [14–18]. For example, the spin correlation measured in this Letter may differ from the SM if the $t\bar{t}$ pairs were produced via the exchange of a virtual heavy scalar Higgs boson [19] or if the top quark decayed into a scalar charged Higgs boson and a b quark ($t \rightarrow H^+ b$) [20].

At the LHC $t\bar{t}$ production occurs mostly through the $gg \rightarrow t\bar{t}$ channel. At low $t\bar{t}$ invariant mass it is dominated by the fusion of like-helicity gluon pairs which produce top quarks in the left-left or right-right helicity configurations [13]. When these decay via $t\bar{t} \rightarrow W^+ W^- b\bar{b} \rightarrow l^+ l^- \nu \bar{\nu} b\bar{b}$ they produce charged leptons which possess correlations in
Observation of Spin Correlation in $t\bar{t}$ Events from pp Collisions at $\sqrt{s} = 7$ TeV
Using the ATLAS Detector

The top quark was discovered in 1995 [1,2] at the Tevatron proton-antiproton collider. The lifetime of the top quark is at least an order of magnitude shorter than the time scale for strong interactions, implying that the top quark decays before hadronization [3–7]. Therefore the spin of the top quark at production is transferred to its decay products and can be measured directly via their angular distributions [4]. While the polarization of t and \bar{t} quarks in a hadronically produced $t\bar{t}$ sample is predicted to be very small, their spins are predicted to be correlated [8–10]. In this Letter the hypothesis that the correlation of the spin of top and antitop quarks in $t\bar{t}$ events is as expected in the standard model (SM), as opposed to the hypothesis that they are uncorrelated, is tested. This tests the precise predictions of $t\bar{t}$ pair production and of top quark decay, which is expected to occur before its spin is flipped by the strong interaction [9–13]. Many scenarios of new physics beyond the SM predict different spin correlations while keeping the $t\bar{t}$ production cross section within experimental and theoretical bounds [14–18]. For example, the spin correlation measured in this Letter may differ from the SM if the $t\bar{t}$ pairs were produced via the exchange of a virtual heavy scalar Higgs boson [19] or if the top quark decayed into a scalar charged Higgs boson and a b quark ($t \rightarrow H^+ b$) [20].

At the LHC $t\bar{t}$ production occurs mostly through the $gg \rightarrow t\bar{t}$ channel. At low $t\bar{t}$ invariant mass it is dominated by the fusion of like-helicity gluon pairs which produce top quarks in the left-left or right-right helicity configurations [13]. When these decay via $t\bar{t} \rightarrow W^+ W^- b\bar{b} \rightarrow l^+ l^- \nu\bar{\nu} b\bar{b}$ they produce charged leptons which possess correlations in
Motivation for paper (or “straw man” statement): why the research in this paper is necessary.
Observation of Spin Correlation in $t\bar{t}$ Events from pp Collisions at $\sqrt{s} = 7$ TeV
Using the ATLAS Detector

The top quark was discovered in 1995 [1,2] at the Tevatron proton-antiproton collider. The lifetime of the top quark is at least an order of magnitude shorter than the time scale for strong interactions, implying that the top quark decays before hadronization [3–7]. Therefore the spin of the top quark at production is transferred to its decay products and can be measured directly via their angular distributions [4]. While the polarization of t and \bar{t} quarks in a hadronically produced $t\bar{t}$ sample is predicted to be very small, their spins are predicted to be correlated [8–10]. In this Letter the hypothesis that the correlation of the spin of top and antitop quarks in $t\bar{t}$ events is as expected in the standard model (SM), as opposed to the hypothesis that they are uncorrelated, is tested. This tests the precise predictions of $t\bar{t}$ pair production and of top quark decay, which is expected to occur before its spin is flipped by the strong interaction [9–13]. Many scenarios of new physics beyond the SM predict different spin correlations while keeping the $t\bar{t}$ production cross section within experimental and theoretical bounds [14–18]. For example, the spin correlation measured in this Letter may differ from the SM if the $t\bar{t}$ pairs were produced via the exchange of a virtual heavy scalar Higgs boson [19] or if the top quark decayed into a scalar charged Higgs boson and a b quark ($t \rightarrow H^+ b$) [20].

At the LHC $t\bar{t}$ production occurs mostly through the $gg \rightarrow t\bar{t}$ channel. At low $t\bar{t}$ invariant mass it is dominated by the fusion of like-helicity gluon pairs which produce top quarks in the left-left or right-right helicity configurations [13]. When these decay via $t\bar{t} \rightarrow W^+ W^- b\bar{b} \rightarrow l^+ l^- \nu \bar{\nu} b\bar{b}$ they produce charged leptons which possess correlations in
Pseudospin-Resolved Transport Spectroscopy of the Kondo Effect in a Double Quantum Dot

The Kondo effect is one of the paradigms of correlated electron physics [1]. It describes how itinerant electrons with a degenerate degree of freedom screen a localized state with the same degeneracy. Typically, the relevant degeneracy is spin: a localized electron is transitioned between degenerate spin states by spin-flip scattering with conduction electrons. Correlations are established between the localized and conduction electrons, with a many-body spin singlet resulting at low temperatures. This Kondo screening causes a resonance in the local density of states (LDOS) at the Fermi energy, which manifests itself in nanostructures as a zero-bias peak in the conductance [2]. While Kondo physics is usually associated with spin, nanostructures allow the realization of the Kondo effect based on orbital degeneracy [3–7]. The advantage to using an orbital degeneracy is its potential to realize a fully tunable state-resolved probe of Kondo physics that does not perturb the Kondo correlations, which is not possible in spin-based Kondo systems.

Spin-resolved transport measurements in nanostructures have been achieved using ferromagnetic contacts, leading to spin-dependent tunnel rates [8–10]. Unfortunately, these spin-dependent rates also affect Kondo physics [11–14]; moreover, the rates are fixed by the contact design and cannot be tuned. Another approach has been to use a quantum point contact as a spin polarizer [15] to build up a nonequilibrium distribution, with a spin-dependent Fermi energy [16]. However, this technique requires a magnetic field that breaks the spin degeneracy necessary for the Kondo effect.

We instead realize a tunable state-resolved probe of the Kondo effect using an orbital degeneracy of a double energy for an electron to be in dot 1 is the same as that for being in dot 2. These orbital states can be coherently manipulated as a two-level “pseudospin” system [19,20]. The advantage of studying a Kondo effect based on pseudospin degeneracy is that by controlling and measuring each of the dots individually, we can characterize the conductance of each pseudospin component [21–25].

In this Letter, we report pseudospin-resolved transport spectroscopy of the Kondo effect based on orbital degeneracy in a DQD. We first demonstrate spectroscopy of the DQD analogous to standard transport spectroscopy in a single dot, and we use this to observe the zero-bias peak that is the hallmark of Kondo physics. In standard spectroscopy of spin Kondo, a magnetic field splits the Kondo peak so that the conductance at zero bias is suppressed and the Kondo peaks occur at positive and negative bias. In contrast, pseudospin-resolved spectroscopy of the orbital Kondo effect in a pseudomagnetic field shows a peak at only one sign of the bias, corresponding to the pseudospin state we are observing. Finally, we demonstrate that a single, consistent Kondo temperature can be defined for the entire DQD system.

We measure a laterally gated DQD fabricated from an epitaxially grown AlGaAs/GaAs heterostructure hosting a two-dimensional electron gas with a density of $2 \times 10^{11} \text{ cm}^{-2}$ and a mobility of $2 \times 10^{6} \text{ cm}^{2}/\text{V s}$. We apply negative voltages to metallic surface gates (inset of Fig. 1) to form two capacitively coupled quantum dots with negligible interdot tunneling [26]. The gates W1L and W1U control the tunneling rates between dot 1 and its source and drain leads Γ_{SL}/h and Γ_{D1}/h, respectively. We define $\Gamma_1 = \Gamma_0 + \Gamma_{SL} + \Gamma_{D1}$, and $\Gamma_2 = \Gamma_0 + \Gamma_{SL} + \Gamma_{D2}$. The conductance
The Kondo effect is one of the paradigms of correlated electron physics [1]. It describes how itinerant electrons with a degenerate degree of freedom screen a localized state with the same degeneracy. Typically, the relevant degeneracy is spin: a localized electron is transitioned between degenerate spin states by spin-flip scattering with conduction electrons. Correlations are established between the localized and conduction electrons, with a many-body spin singlet resulting at low temperatures. This Kondo screening causes a resonance in the local density of states (LDOS) at the Fermi energy, which manifests itself in nanostructures as a zero-bias peak in the conductance [2]. While Kondo physics is usually associated with spin, nanostructures allow the realization of the Kondo effect based on orbital degeneracy [3–7]. The advantage to using an orbital degeneracy is its potential to realize a fully tunable state-resolved probe of Kondo physics that does not perturb the Kondo correlations, which is not possible in spin-based Kondo systems.

Spin-resolved transport measurements in nanostructures have been achieved using ferromagnetic contacts, leading to spin-dependent tunnel rates [8–10]. Unfortunately, these spin-dependent rates also affect Kondo physics [11–14]; moreover, the rates are fixed by the contact design and cannot be tuned. Another approach has been to use a quantum point contact as a spin polarizer [15] to build up a nonequilibrium distribution, with a spin-dependent Fermi energy [16]. However, this technique requires a magnetic field that breaks the spin degeneracy necessary for the Kondo effect.

We instead realize a tunable state-resolved probe of the Kondo effect using an orbital degeneracy of a double quantum dot (DQD) [17,18], which occurs when the
The Kondo effect is one of the paradigms of correlated electron physics [1]. It describes how itinerant electrons with a degenerate degree of freedom screen a localized state with the same degeneracy. Typically, the relevant degeneracy is spin: a localized electron is transitioned between degenerate spin states by spin-flip scattering with conduction electrons. Correlations are established between the localized and conduction electrons, with a many-body spin singlet resulting at low temperatures. This Kondo screening causes a resonance in the local density of states (LDOS) at the Fermi energy, which manifests itself in nanostructures as a zero-bias peak in the conductance [2]. While Kondo physics is usually associated with spin, nanostructures allow the realization of the Kondo effect based on orbital degeneracy [3–7]. The advantage to using an orbital degeneracy is its potential to realize a fully tunable state-resolved probe of Kondo physics that does not perturb the Kondo correlations, which is not possible in spin-based Kondo systems.

Spin-resolved transport measurements in nanostructures have been achieved using ferromagnetic contacts, leading to spin-dependent tunnel rates [8–10]. Unfortunately, these spin-dependent rates also affect Kondo physics [11–14]; moreover, the rates are fixed by the contact design and cannot be tuned. Another approach has been to use a quantum point contact as a spin polarizer [15] to build up a nonequilibrium distribution, with a spin-dependent Fermi energy [16]. However, this technique requires a magnetic field that breaks the spin degeneracy necessary for the Kondo effect.

We instead realize a tunable state-resolved probe of the Kondo effect using an orbital degeneracy of a double quantum dot (DQD) [17,18], which occurs when the
The Kondo effect is one of the paradigms of correlated electron physics [1]. It describes how itinerant electrons with a degenerate degree of freedom screen a localized state with the same degeneracy. Typically, the relevant degeneracy is spin: a localized electron is transitioned between degenerate spin states by spin-flip scattering with conduction electrons. Correlations are established between the localized and conduction electrons, with a many-body spin singlet resulting at low temperatures. This Kondo screening causes a resonance in the local density of states (LDOS) at the Fermi energy, which manifests itself in nanostructures as a zero-bias peak in the conductance [2]. While Kondo physics is usually associated with spin, nanostructures allow the realization of the Kondo effect based on orbital degeneracy [3–7]. The advantage to using an orbital degeneracy is its potential to realize a fully tunable state-resolved probe of Kondo physics that does not perturb the Kondo correlations, which is not possible in spin-based Kondo systems.

Spin-resolved transport measurements in nanostructures have been achieved using ferromagnetic contacts, leading to spin-dependent tunnel rates [8–10]. Unfortunately, these spin-dependent rates also affect Kondo physics [11–14]; moreover, the rates are fixed by the contact design and cannot be tuned. Another approach has been to use a quantum point contact as a spin polarizer [15] to build up a nonequilibrium distribution, with a spin-dependent Fermi energy [16]. However, this technique requires a magnetic field that breaks the spin degeneracy necessary for the Kondo effect.

We instead realize a tunable state-resolved probe of the Kondo effect using an orbital degeneracy of a double quantum dot (DQD) [17,18], which occurs when the
The Kondo effect is one of the paradigms of correlated electron physics [1]. It describes how itinerant electrons with a degenerate degree of freedom screen a localized state with the same degeneracy. Typically, the relevant degeneracy is spin: a localized electron is transitioned between degenerate spin states by spin-flip scattering with conduction electrons. Correlations are established between the localized and conduction electrons, with a many-body spin singlet resulting at low temperatures. This Kondo screening causes a resonance in the local density of states (LDOS) at the Fermi energy, which manifests itself in nanostructures as a zero-bias peak in the conductance [2]. While Kondo physics is usually associated with spin, nanostructures allow the realization of the Kondo effect based on orbital degeneracy [3–7]. The advantage to using an orbital degeneracy is its potential to realize a fully tunable state-resolved probe of Kondo physics that does not perturb the Kondo correlations, which is not possible in spin-based Kondo systems.

Spin-resolved transport measurements in nanostructures have been achieved using ferromagnetic contacts, leading to spin-dependent tunnel rates [8–10]. Unfortunately, these spin-dependent rates also affect Kondo physics [11–14]; moreover, the rates are fixed by the contact design and cannot be tuned. Another approach has been to use a quantum point contact as a spin polarizer [15] to build up a nonequilibrium distribution, with a spin-dependent Fermi energy [16]. However, this technique requires a magnetic field that breaks the spin degeneracy necessary for the Kondo effect.

We instead realize a tunable state-resolved probe of the Kondo effect using an orbital degeneracy of a double quantum dot (DQD) [17,18], which occurs when the

energy for an electron to be in dot 1 is the same as that for being in dot 2. These orbital states can be coherently manipulated as a two-level “pseudospin” system [19,20]. The advantage of studying a Kondo effect based on pseudospin degeneracy is that by controlling and measuring each of the dots individually, we can characterize the conductance of each pseudospin component [21–25].

In this Letter, we report pseudospin-resolved transport spectroscopy of the Kondo effect based on an orbital degeneracy in a DQD. We first demonstrate spectroscopy of the DQD analogous to standard transport spectroscopy in a single dot, and we use this to observe the zero-bias peak that is the hallmark of Kondo physics. In standard spectroscopy of spin Kondo, a magnetic field splits the Kondo peak so that the conductance at zero bias is suppressed and the Kondo peaks occur at positive and negative bias. In contrast, pseudospin-resolved spectroscopy of the orbital Kondo effect in a pseudomagnetic field shows a peak at only one sign of the bias, corresponding to the pseudospin state we are observing. Finally, we demonstrate that a single, consistent Kondo temperature can be defined for the entire DQD system.
Effects of Particle Shape on Growth Dynamics at Edges of Evaporating Drops of Colloidal Suspensions

Peter J. Yunker, Matthew A. Lohr, Tim Still, Alexei Borodin, D. J. Durian, and A. G. Yodh

Examples of surface and interfacial growth phenomena are diverse, ranging from the production of uniform coatings by vapor deposition of atoms onto a substrate [1], to burning paper wherein the combustion front roughens as it spreads [2,3], to bacterial colonies whose boundaries expand and fluctuate as bacteria replicate [4]. The morphology of the resulting interfaces is a property that affects the macroscopic responses of such systems, and it is therefore desirable to relate interface morphology to the microscopic rules that govern growth [1,5,6]. To this end, simulations have directly compared a broad range of growth processes [5,6] and have found, for example, that the random deposition of repulsive particles is a Poisson process, while the random deposition of “sticky” particles belongs to a different universality class that leads to different interface morphology.

Besides discrete models, theoretical investigation of this problem has centered around continuum growth equations (e.g., Ref. [7]). One interesting approach that unified a large set of discrete simulations is based on the so-called Kardar-Parisi-Zhang (KPZ) equation [6,8–12]. This nonlinear equation relates stochastic growth and interfacial growth fronts, lines, or surfaces to diffusion and local lateral correlations; its solutions are known and belong to the KPZ universality class [13–16]. The KPZ class presents a rare opportunity for connecting exact theoretical predictions about nonequilibrium growth phenomena with experiment. However, to date only a few members of the KPZ class have been experimentally identified [2–4,17]. This paucity of KPZ examples is due, in part, to the presence of quenched disorder and long-range interactions in experimentally relevant systems.

Broadly speaking, experimental confrontation of the microscopic rules explored by theory and simulation has been difficult.

In this contribution we demonstrate that the rich nonequilibrium physics of evaporating colloidal drops provides an attractive experimental system for study of such growth processes and for testing theory and simulation predictions. Specifically, we investigate the growth of particle deposits from the edges of evaporating colloidal drops. Particle deposition is observed by video microscopy at the single particle level. Aqueous suspensions of colloidal particles are allowed to evaporate on glass slides at constant temperature and humidity, and radial convective flows during evaporation carry particles from drop center to drop edge, where they accumulate [Fig. 1(a)] [18]. The resulting deposits of particles grow from the edge on the air-water interface in two dimensions, defining a deposition front, or growth line, that varies in space and time. Interestingly, these interfacial growth processes are strongly dependent on colloidal particle shape [19]. Three distinct growth processes were discovered in the evaporating colloidal suspensions by tuning particle shape-dependent capillary interactions and thus varying the microscopic rules of deposition. The substantial shape fluctuations of the growth line of spheres are readily explained via a Poisson-like deposition process; slightly anisotropic particles exhibit weaker fluctuations characteristic of KPZ class behavior, and very anisotropic ellipsoids exhibit behavior consistent with the KPZ class in the presence of quenched disorder [20–22].

Our experiments employ water drops containing a
Examples of surface and interfacial growth phenomena are diverse, ranging from the production of uniform coatings by vapor deposition of atoms onto a substrate [1], to burning paper wherein the combustion front roughens as it spreads [2,3], to bacterial colonies whose boundaries expand and fluctuate as bacteria replicate [4]. The morphology of the resulting interfaces is a property that affects the macroscopic responses of such systems, and it is therefore desirable to relate interface morphology to the microscopic rules that govern growth [1,5,6]. To this end, simulations have directly compared a broad range of growth processes [5,6] and have found, for example, that the random deposition of repulsive particles is a Poisson process, while the random deposition of “sticky” particles belongs to a different universality class that leads to different interface morphology.

Besides discrete models, theoretical investigation of this problem has centered around continuum growth equations (e.g., Ref. [7]). One interesting approach that unified a large set of discrete simulations is based on the so-called Kardar-Parisi-Zhang (KPZ) equation [6,8–12]. This non-linear equation relates stochastic growth and interfacial growth fronts, lines, or surfaces to diffusion and local lateral correlations; its solutions are known and belong to the KPZ universality class [13–16]. The KPZ class presents a rare opportunity for connecting exact theoretical predictions about nonequilibrium growth phenomena with experiment. However, to date only a few members of the KPZ class have been experimentally identified [2–4,17]. This paucity of KPZ examples is due, in part, to the presence of quenched disorder and long-range interactions in experiment, as well as to limited statistics, which make growth process differences difficult to discern. In fact,
Examples of surface and interfacial growth phenomena are diverse, ranging from the production of uniform coatings by vapor deposition of atoms onto a substrate [1], to burning paper wherein the combustion front roughens as it spreads [2,3], to bacterial colonies whose boundaries expand and fluctuate as bacteria replicate [4]. The morphology of the resulting interfaces is a property that affects the macroscopic responses of such systems, and it is therefore desirable to relate interface morphology to the microscopic rules that govern growth [1,5,6]. To this end, simulations have directly compared a broad range of growth processes [5,6] and have found, for example, that the random deposition of repulsive particles is a Poisson process, while the random deposition of “sticky” particles belongs to a different universality class that leads to different interface morphology.

Besides discrete models, theoretical investigation of this problem has centered around continuum growth equations (e.g., Ref. [7]). One interesting approach that unified a large set of discrete simulations is based on the so-called Kardar-Parisi-Zhang (KPZ) equation [6,8–12]. This non-linear equation relates stochastic growth and interfacial growth fronts, lines, or surfaces to diffusion and local lateral correlations; its solutions are known and belong to the KPZ universality class [13–16]. The KPZ class presents a rare opportunity for connecting exact theoretical predictions about nonequilibrium growth phenomena with experiment. However, to date only a few members of the KPZ class have been experimentally identified [2–4,17]. This paucity of KPZ examples is due, in part, to the presence of quenched disorder and long-range interactions in experiment, as well as to limited statistics, which make growth process differences difficult to discern. In fact,
Motivation for paper (or “straw man” statement): why the research in this paper is necessary
broadly speaking, experimental confrontation of the microscopic rules explored by theory and simulation has been difficult. In this contribution we demonstrate that the rich non-equilibrium physics of evaporating colloidal drops provides an attractive experimental system for study of such growth processes and for testing theory and simulation predictions. Specifically, we investigate the growth of particle deposits from the edges of evaporating colloidal drops. Particle deposition is observed by video microscopy at the single particle level. Aqueous suspensions of colloidal particles are allowed to evaporate on glass slides at constant temperature and humidity, and radial convective flows during evaporation carry particles from drop center to drop edge, where they accumulate [Fig. 1(a)] [18]. The resulting deposits of particles grow from the edge on the air-water interface in two dimensions, defining a deposition front, or growth line, that varies in space and time. Interestingly, these interfacial growth processes are strongly dependent on colloidal particle shape [19]. Three distinct growth processes were discovered in the evaporating colloidal suspensions by tuning particle shape-dependent capillary interactions and thus varying the microscopic rules of deposition. The substantial shape fluctuations of the growth line of spheres are readily explained via a Poisson-like deposition process; slightly anisotropic particles exhibit weaker fluctuations characteristic of KPZ class behavior, and very anisotropic ellipsoids exhibit behavior consistent with the KPZ class in the presence of quenched disorder [20–22].

Our experiments employ water drops containing a suspension of polystyrene spheres (Invitrogen) stretched asymmetrically to different aspect ratios [19,23,24].
Laser cooling of a semiconductor by 40 kelvin

Jun Zhang, Dehui Li, Renjie Chen & Qihua Xiong

Nature 493, 504 (2013)
Laser cooling of a semiconductor by 40 kelvin

Jun Zhang1*, Dehui Li1*, Renjie Chen1 & Qihua Xiong1,2

Optical irradiation accompanied by spontaneous anti-Stokes emission can lead to cooling of matter, in a phenomenon known as laser cooling, or optical refrigeration, which was proposed by Pringsheim in 19299. In gaseous matter, an extremely low temperature can be obtained in diluted atomic gases by Doppler cooling2, and laser cooling of ultradense gas has been demonstrated by collisional redistribution of radiation3. In solid-state materials, laser cooling is achieved by the annihilation of phonons, which are quanta of lattice vibrations, during anti-Stokes luminescence. Since the first experimental demonstration in glasses doped with rare-earth metals4, considerable progress has been made, particularly in ytterbium-doped glasses or crystals: recently a record was set of cooling to about 110 kelvin from the ambient temperature, surpassing the thermoelectric Peltier cooler5,6. It would be interesting to realize laser cooling in semiconductors, in which excitonic resonances dominate7,8, rather than in systems doped with rare-earth metals, where atomic resonances dominate. However, so far no net cooling in semiconductors has been achieved despite much experimental10-12 and theoretical9,13,14 work, mainly on group-III–V gallium arsenide quantum wells. Here we report a net cooling by about 40 kelvin in a semiconductor using group-II–VI cadmium sulphide nanoribbons, or nanobelts, starting from 290 kelvin. We use a pump laser with a wavelength of 514 nanometres, and obtain an estimated cooling efficiency of about 1.3 per cent and an estimated cooling power of 180 microwatts. At 100 kelvin, 532-nm pumping leads to a net cooling of about 15 kelvin with a cooling efficiency of about 2.0 per cent. We attribute the net laser cooling in cadmium sulphide nanobelts to strong coupling between excitons and longitudinal optical phonons (LOPs), which allows the resonant annihilation of multiple LOPs in luminescence up-conversion processes, high external quantum efficiency and negligible background absorption. Our findings suggest that, alternatively, group-II–VI semiconductors with strong exciton–LOP coupling could be harnessed to achieve laser cooling and open the way to optical refrigeration based on semiconductors.

Here \(\nu \) is the pump laser frequency, \(T \) is the absolute temperature of the sample, \(\eta \) is the mean emission frequency and \(h \) is Planck’s constant; \(\eta_{\text{ex}} \) is the external quantum efficiency, written as \(\eta_{\text{ex}} = \eta_{\text{eff}} W_{\text{rad}} / (\eta_{\text{eff}} W_{\text{rad}} + W_{\text{nr}}) \), where \(\eta_{\text{eff}} \) is the luminescence extraction efficiency and \(W_{\text{rad}} \) and \(W_{\text{nr}} \) are respectively the radiative and non-radiative recombination rates; and \(\eta_{\text{abs}} = [1 + \alpha_{b}(\nu, T)]^{-1} \) is the absorption efficiency, quantifying the percentage of photons absorbed that are engaged in cooling, where \(\alpha_{b} \) is the background absorption coefficient and \(\alpha_{v}(\nu, T) \) is the semiconductor absorption coefficient. Net laser cooling requires \(\eta_{\text{abs}}(\nu, T) > 0 \), which might be achieved in three related ways: having a large energy difference \(\Delta E = h\nu_{v}(T) - h\nu \); having \(\eta_{\text{ex}} \) approach unity; and having \(\eta_{\text{abs}} \) approach unity through the minimization of the background absorption, \(\alpha_{b} \).

In the classical Pringsheim picture applied to solids, each cooling cycle removes \(\Delta E = h\nu_{v}(T) - h\nu = k_{B}T \) during the thermalization of cold electrons and holes, owing to absorption of various phonons. In GaAs, single LOP-assisted transitions in band-tail absorption (Urbach tail) have been proposed to facilitate laser cooling20,21. It has also been proposed that the band structure can be engineered, for example by introducing donor–acceptor pairs, which modifies the density of states and could lead to a larger \(\Delta E \), making the dependence on the other two factors \(\eta_{\text{ex}} \) and \(\eta_{\text{abs}} \) less important. However, experimentally that is difficult to achieve because the doping density and binding energies of both donors and acceptors have to be simultaneously optimized. We find that strong exciton–LOP coupling in II–VI semiconductors such as cadmium sulphide (CdS) can be harnessed to facilitate laser cooling by the annihilation of one or more LOPs, leading to the removal of several \(k_{B}T \) units of heat in each cooling cycle.

Figure 1a shows the anti-Stokes photoluminescence spectra of a CdS nanobelt excited by a 532-nm laser (bottom) and a 514-nm laser (top) at 294 K at three different pumping powers. Strong anti-Stokes photoluminescence with a peak position of \(\sim 506 \text{nm} \) is identified, facilitated by resonant annihilation of multiple LOPs (one for the 514-nm laser and three for the 532-nm laser; \(h\nu_{\text{LO}} \approx 37 \text{ meV}, \) or 300 cm-1). We note that 514-nm pumping led to much stronger up-conversion, owing to
Optical irradiation accompanied by spontaneous anti-Stokes emission can lead to cooling of matter, in a phenomenon known as laser cooling, or optical refrigeration, which was proposed by Pringsheim in 1929. In gaseous matter, an extremely low temperature can be obtained in diluted atomic gases by Doppler cooling, and laser cooling of ultradense gas has been demonstrated by collisional redistribution of radiation. In solid-state materials, laser cooling is achieved by the annihilation of phonons, which are quanta of lattice vibrations, during anti-Stokes luminescence. Since the first experimental demonstration in glasses doped with rare-earth metals, considerable progress has been made, particularly in ytterbium-doped glasses or crystals: recently a record was set of cooling to about 110 kelvin from the ambient temperature, surpassing the thermoelectric Peltier cooler. It would be interesting to realize laser cooling in semiconductors, in which excitonic resonances dominate, rather than in systems doped with rare-earth metals, where atomic resonances dominate. However, so far no net cooling in semiconductors has been achieved despite much experimental and theoretical work, mainly on group-III–V gallium arsenide quantum wells. Here we report a net cooling by about 40 kelvin in a semiconductor using group-II–VI cadmium sulphide nanoribbons, or nanobelts, starting from 290 kelvin. We use a pump laser with a wavelength of 514 nanometres, and obtain an estimated cooling efficiency of about 1.3 per cent and an estimated cooling power of 180 microwatts. At 100 kelvin, 532-nm pumping leads to a net cooling of about 15 kelvin with a cooling efficiency of about 2.0 per cent. We attribute the net laser cooling in cadmium sulphide nanobelts to strong coupling between excitons and longitudinal optical phonons (LOPs), which allows the resonant annihilation of multiple LOPs in luminescence up-conversion processes, high external quantum efficiency and negligible background absorption. Our findings suggest that, alternatively, group-II–VI semiconductors with strong exciton–LOP coupling could be harnessed to achieve laser cooling and open the way to optical refrigeration based on semiconductors.
Optical irradiation accompanied by spontaneous anti-Stokes emission can lead to cooling of matter, in a phenomenon known as laser cooling, or optical refrigeration, which was proposed by Pringsheim in 1929. In gaseous matter, an extremely low temperature can be obtained in diluted atomic gases by Doppler cooling, and laser cooling of ultradense gas has been demonstrated by collisional redistribution of radiation. In solid-state materials, laser cooling is achieved by the annihilation of phonons, which are quanta of lattice vibrations, during anti-Stokes luminescence. Since the first experimental demonstration in glasses doped with rare-earth metals, considerable progress has been made, particularly in ytterbium-doped glasses or crystals: recently a record was set of cooling to about 110 kelvin from the ambient temperature, surpassing the thermoelectric Peltier cooler. It would be interesting to realize laser cooling in semiconductors, in which excitonic resonances dominate, rather than in systems doped with rare-earth metals, where atomic resonances dominate. However, so far no net cooling in semiconductors has been achieved despite much experimental and theoretical work, mainly on group-III–V gallium arsenide quantum wells. Here we report a net cooling by about 40 kelvin in a semiconductor using group-II–VI cadmium sulphide nanoribbons, or nanobelts, starting from 290 kelvin. We use a pump laser with a wavelength of 514 nanometres, and obtain an estimated cooling efficiency of about 1.3 per cent and an estimated cooling power of 180 microwatts. At 100 kelvin, 532-nm pumping leads to a net cooling of about 15 kelvin with a cooling efficiency of about 2.0 per cent. We attribute the net laser cooling in cadmium sulphide nanobelts to strong coupling between excitons and longitudinal optical phonons (LOPs), which allows the resonant annihilation of multiple LOPs in luminescence up-conversion processes, high external quantum efficiency and negligible background absorption. Our findings suggest that, alternatively, group-II–VI semiconductors with strong exciton–LOP coupling could be harnessed to achieve laser cooling and open the way to optical refrigeration based on semiconductors.
Motivation for paper (or “straw man” statement): why the research in this paper is necessary

Optical irradiation accompanied by spontaneous anti-Stokes emission can lead to cooling of matter, in a phenomenon known as laser cooling, or optical refrigeration, which was proposed by Pringsheim in 1929\(^1\). In gaseous matter, an extremely low temperature can be obtained in diluted atomic gases by Doppler cooling\(^2\), and laser cooling of ultradense gas has been demonstrated by collisional redistribution of radiation\(^3\). In solid-state materials, laser cooling is achieved by the annihilation of phonons, which are quanta of lattice vibrations, during anti-Stokes luminescence. Since the first experimental demonstration in glasses doped with rare-earth metals\(^4\), considerable progress has been made, particularly in ytterbium-doped glasses or crystals: recently a record was set of cooling to about 110 kelvin from the ambient temperature, surpassing the thermoelectric Peltier cooler\(^5\). It would be interesting to realize laser cooling in semiconductors, in which excitonic resonances dominate\(^7\)\(^8\)\(^9\), rather than in systems doped with rare-earth metals, where atomic resonances dominate. However, so far no net cooling in semiconductors has been achieved despite much experimental\(^10\)\(^-\)\(^12\) and theoretical\(^7\)\(^-\)\(^8\)\(^13\)\(^14\) work, mainly on group-III–V gallium arsenide quantum wells. Here we report a net cooling by about 40 kelvin in a semiconductor using group-II–VI cadmium sulphide nanoribbons, or nanobelts, starting from 290 kelvin. We use a pump laser with a wavelength of 514 nanometres, and obtain an estimated cooling efficiency of about 1.3 per cent and an estimated cooling power of 180 microwatts. At 100 kelvin, 532-nm pumping leads to a net cooling of about 15 kelvin with a cooling efficiency of about 2.0 per cent. We attribute the net laser cooling in cadmium sulphide nanobelts to strong coupling between excitons and longitudinal optical phonons (LOPs), which allows the resonant annihilation of multiple LOPs in luminescence up-conversion processes, high external quantum efficiency and negligible background absorption. Our findings suggest that, alternatively, group-II–VI semiconductors with strong exciton–LOP coupling could be harnessed to achieve laser cooling and open the way to optical refrigeration based on semiconductors.
Optical irradiation accompanied by spontaneous anti-Stokes emission can lead to cooling of matter, in a phenomenon known as laser cooling, or optical refrigeration, which was proposed by Pringsheim in 19291. In gaseous matter, an extremely low temperature can be obtained in dilute atomic gases by Doppler cooling2, and laser cooling of ultradense gas has been demonstrated by collisional redistribution of radiation3. In solid-state materials, laser cooling is achieved by the annihilation of phonons, which are quanta of lattice vibrations, during anti-Stokes luminescence. Since the first experimental demonstration in glasses doped with rare-earth metals4, considerable progress has been made, particularly in ytterbium-doped glasses or crystals: recently a record was set of cooling to about 110 kelvin from the ambient temperature, surpassing the thermoelectric Peltier cooler5,6. It would be interesting to realize laser cooling in semiconductors, in which excitonic resonances dominate7–9, rather than in systems doped with rare-earth metals, where atomic resonances dominate. However, so far no net cooling in semiconductors has been achieved despite much experimental10–12 and theoretical7–9,13,14 work, mainly on group-III–V gallium arsenide quantum wells. Here we report a net cooling by about 40 kelvin in a semiconductor using group–II–VI cadmium sulphide nanoribbons, or nanobelts, starting from 290 kelvin. We use a pump laser with a wavelength of 514 nanometres, and obtain an estimated cooling efficiency of about 1.3 per cent and an estimated cooling power of 180 microwatts. At 100 kelvin, 532-nm pumping leads to a net cooling of about 15 kelvin with a cooling efficiency of about 2.0 per cent. We attribute the net laser cooling in cadmium sulphide nanobelts to strong coupling between excitons and longitudinal optical phonons (LOPs), which allows the resonant annihilation of multiple LOPs in luminescence up-conversion processes, high external quantum efficiency and negligible background absorption. Our findings suggest that, alternatively, group–II–VI semiconductors with strong exciton–LOP coupling could be harnessed to achieve laser cooling and open the way to optical refrigeration based on semiconductors.
Informal (ungraded) homework assignment

Using your journal club paper selection:

1. Read the abstract of your paper carefully, and see if it has the Motivation, Methods, Results, and Significance structure we discussed today. If not, assess whether the abstract could have been improved with this structure.

2. Read the introduction of your paper carefully, and see if it has the structure discussed today: “Big Picture” Motivation, Background Information/Narrowing Focus, Motivation for Research, and Preview of Key Results. If not, assess whether the introduction could have been improved with this structure.