
PHYS598PTD A.J.Leggett Lecture 16 The QHE: general considerations 1

The quantum Hall effect: general considerations1

We have so far dealt separately with 1D and 2D systems. But in a magnetic field, a
system of charged particles (e.g. electrons) essentially has its dimensionality reduced by
one, since the paths are bent into circles. At the classical level we see the effects of this
even in 3D systems, e.g. in cyclotron resonance in metals. At the quantum level, the
effects are more spectacular because the closed orbits now become quantized. However,
in 3D metals the effects of this are somewhat blurred by the third dimension, and the
only reason we can see anything interesting is that (e.g.) “extremal” regions of the
Fermi surface tend to contribute an anomalously large amount; this is what leads to the
well-known dHvA, Shubnikov-de Haas and other effects in bulk 3D metals. The effect of
quantization of closed orbits comes out much more strikingly for systems which start off
genuinely “2D”; however, even given this condition the requirements to see something
interesting are quite stringent. We need

(a) a scattering time which is much larger that the inverse of the cyclotron resonance
frequency ωc ≡ eB/m

(b) a mean free path much larger than the “magnetic length” (see below) defined by
lM ∼ (~/eB)1/2

(c) temperatures low enough that kBT . ~ωc

(d) a coverage (number of electrons per unit area) n such that n ∼ l−2
M ∼ eB/~

Since (at least until recently) the maximum attained value of B was around 10T, the
maximum value of n which can be tolerated is of order 1012 cm−2.

As already briefly discussed in lecture 3, the main types of system used for QHE
experiments are

(a) Si MOSFET’s, and

(b) GaAs-AlGaAs heterostructures. (refs.: Prange et al. section I.8, II, VI, Yoshioka
section I.1)

Si MOSFET’s:

the width of the inversion layer is typically ∼25-50 Å(width of the depletion layer is
much greater). The effective mass of an electron at the bottom of the conduction band
of Si is 0.2me (with six different “valleys” in bulk, often reduced to 2 near a surface)
(note lattice has cubic symmetry) so the energy of the first “transverse” excited state is
∼100 K, and at the temperatures of interest the system may be regarded as 2D. Typical
areal densities (controlled by the gate voltage) are in the range 1011-1012 cm−2, so that
(taking the spin and “valley” degeneracy into account) the Fermi energy is in the range

1R.E. Prange, S.M. Girvin, The Quantum Hall Effect (2nd edition), Springer 1990; D. Yoshioka, The
Quantum Hall Effect, Springer 2002; J. Jain, Composite Fermions, Cambridge University Press, 2007.
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4-40 K. This is very small compared to the width of the conduction band, so that the
effective-mass approximation for the 2D motion should be very good. The mobility of
electrons in the inversion layer seems to be limited mostly by scattering by the ionized
acceptors in the depletion layer, and is usually not more than ∼ 40000 cm2/V sec. The
main advantage of the Si MOSFET system is that the areal density may be easily
controlled by changing the gate voltage (ε ≈ 12 for Si, m∗/m ∼ 0.2).

GaAs-GaAlAs heterostructures:

width of inversion layer ∼ 100 Å(again, width of “depletion” layer is much greater).
Effective mass of electron in GaAs conduction band ∼ 0.07me (with only one “valley”).
Generally, parameters similar in order of magnitude to Si MOSFET case. But mobility
can be considerably greater (since the donors are far separated from the inversion region),
up to ∼ 3× 107 cm2/V sec. (ε ≈ 11).

[Also: electrons on surface of liquid 4He (but n . 108 cm−2 ⇒ TF . 2 mK)]

Conductances etc. in 2D:

Fundamental definitions: Consider a rectangular 2D block

L

W
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x

of material, length L, width W , then can define resistance
R and conductance Σ tensors by

Vi ≡
∑

j

RijIj , Ii ≡
∑

j

ΣijVj (1)

Hence Σ is matrix inverse of R. Note carefully that (e.g.)
R11 means the ratio of V1 to I1 with I2 = 0, while Σ11

means the ratio of I1 to V1 with V2 = 0; these two quantities are not necessary inverses!
In particular, note that since e.g. Rxx = Σyy/det Σ, it is perfectly possible to have Rxx

and Σxx simultaneously zero (provided that Σxy and Rxy are nonzero).
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Resistivity ≡ resistance (tensor) × cross-sectional “area” (length in 2D) ⊥ to current
flow / length over which voltage drops. In 3D dim ρ ∼ dim (RL), but in 2D resistance
and resistivity have same dimension, and in fact R� = ρ (as a tensor relation). For
the “Hall resistance” things are even simpler: if magnetic field is out of page, RH is
defined to be ∼ voltage drop across y-dimension (W ) / current flowing in x-direction
(with y-direction open-circuited so Iy = 0). Evidently in this case RH ≡ ρH, with no
dependence on L or W . (By contrast, Rxx = (L/W )ρxx). Generally, in the QHE it is
much more convenient to discuss “ances” rather than “ivities”.

We will see, below, that the quantum Hall states (integer or fractional) are charac-
terized by the property σxx = 0, σxy = const. States of this kind have a remarkable
property: under very wide conditions the Hall conductance ΣH ≡ I/V measured in any
four-terminal setup with the topology shown on the figure is independent of the geom-
etry and equal to σxy! This follows simply from div j = 0 and V = −

∫
E · ds, since

I =
∫
j⊥ds = σxy

∫
E · ds = σxyV ⇒ Σ⊥ ≡ I/V = σxy = R−1

H . So the “Hall” resistance
is actually a special case of a more general four-terminal resistance.

The quantum Hall effect: phenomenology

The initial observations (von Klitzing et al., 1980) were that when the areal density
of carriers ns is held fixed and the magnetic field B varied (or vice versa) there are
a number of plateaux in the Hall resistance, corresponding to value h/ne2 where n is
an integer. Over the length of each plateau the longitudinal resistance is zero within
experimental error. Thus ΣH ≡ Σxy ≡ 1/RH and Σxx = 0, and we get the graph plotted
in terms of conductances, as shown.2 The plateaux are centered on values of nsh/eB
which correspond to integers. This is the integral quantum Hall effect (IQHE).

Subsequently (Tsui et al., 1982) it was discovered that there exist also some rational
2For historical reasons experimentalists conventionally plot RH versus B, so that the graphs, while

qualitatively similar to the one shown, do not possess the periodicity shown along either axis.
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fractional values of nsh/eB (≡ ν), around which Hall plateaux can be centered; the
corresponding value of the Hall conductance is ν(e2/h). Almost without exception, the
value of ν and which this “fractional quantum Hall effect” (FQHE) occurs are fractions
with odd denominators (originally 1/3, than 1/5, 2/5, 4/7 . . . ); the one definitively
known counterexample3 (as of October 2009) is ν = 5/2, with some evidence also for
ν = 7/2 and possibly ν = 19/8. The general behavior of the FQHE is similar to that of
the IQHE, but it seems to be less robust against the effects of temperature and impurity
scattering.

As far as is currently known, the integral (or rational-fractional) value of ΣH in units
of e2/h on the plateaux is exact, and in fact it now forms a basis for metrology (see
Prange et al., ch. II). This is at first sight very surprising, since not only variations in
material properties such as the effective mass but even deviations from perfection in the
geometry ought to be very large compared to 1 part in 108; nevertheless, the measured
values of RH seem to be independent of all such variations to about this accuracy!

As we shall see in a moment, there is absolutely no mystery about the fact that at
exactly integral values of the “filling factor” ν ≡ nsh/eB the Hall resistance in units of
h/e2 is exactly 1/ν; the mystery is why this result is maintained over a finite range of
ν. Also, it appears that no “naive” theory can explain the appearances of plateaux at
non-integral values of ν (the FQHE).

Classical considerations4

Let’s start by considering the simple problem of the motion of a free electron in an
external electric field E and magnetic field B, in general not mutually parallel. Newton’s

3The phenomena which occur at ν = 1/2, though very interesting, are not examples of the FQHE.
4Yoshioka, section 2.1.2.
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equation is

m
d2r
dt2

= eE + ev ×B (2)

with the general solution
r(t) = v0t+ r0(t) (3)

where
v0 ≡ E ×B/B2, r0(t) = r0(cosωct, sinωct, 0), ωc ≡ eB/m (4)

In words, the motion of the electron is a superposition of a steady drift in the direction
perpendicular to both E and B, with velocity E/B, and a “cyclotron” (circular) motion
of arbitrary amplitude around the magnetic field.
It is clear that this solution can be generalized to a situ-

E

B

ation when the “field” E ≡ −∇V acting on the electron
is varying in space (but the magnetic field is constant). In
fact, let us make the ansatz r(t) ≡ r1(t) + r2(t), where r1

and r2 are constrained to satisfy

dr1(t)
dt

= E(r1)×B/B2,
d2r2(t)
dt2

=
e

m

dr2

dt
×B (5)

that is, the “guiding center” r1(t) moves along equipoten-
tials in the plane normal to B, while r2(t) performs cy-
clotron motion around the guiding center. It is clear that
this ansatz satisfies Newton’s equation up to terms of order of the gradients of E, so in
the limit of sufficiently slow variation of the macroscopic potential it should be a good
approximation.

Consider now a collection of electrons in a constant electric field E and magnetic
field B. If we average over a time long compared to the cyclotron frequency ωc, then
independently of the phases of the different electrons the average electric current will be
simply given by

J = nev0 = ne(E ×B)/B2 (6)

In the standard geometry, in which B is normal to the plane containing the electrons,
this means that the conductivity tensor is given by

σxx = σyy = 0, σxy = −σyx = ne/B (7)

or equivalently
ρxx = ρyy = 0, ρxy = −ρyx = B/ne (8)

It is interesting to obtain this result in a different way, which shows that it is much
more general than indicated above. Consider a system of electrons moving in free space
with arbitrary translation-invariant mutual interaction, subject to E and B and also to
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collisions with static impurities which may be adequately described by a phenomenolog-
ical collision time τ . Than, since the el-el interactions cannot change the electric current
J, the equation of motion of the latter is

dJ
dt

=
ne2

m
E +

( J
ne

×B
)
− J/τ (9)

Setting the RHS of this equation to zero in a steady state, we obtain

E = ρ0J− J×B/ne (10)

where ρ0 ≡ m/ne2τ is the zero-magnetic-field resistivity. That is, the resistivity tensor
has the simple form

ρ =
(

ρ0 B/ne
−B/ne ρ0

)
(11)

and ρxy does not depend explicitly on the ratio ωcτ . The conductivity tensor is a little
more complicated:

σ =
1

1 + ω2
c τ

2

(
σ0 (B/ne)σ2

0

(−B/ne)σ2
0 σ0

)
, σ0 ≡ ρ−1

0 (12)

In the limit ωcτ → ∞ we have σxx → 0, σxy → ne/B, as we got from our earlier
calculation.

In the real-life case which occur in experiments, the electrons are moving not in free
space but in a crystalline lattice (and current is degraded by collisions with phonons
as well as with static impurities). In the general case this gives rise to some subtle
complications.5 However, in the cases of physical interest, when the Fermi wave vector
is tiny on the scale of the first Brillouin zone, the above simple approach should be
valid6 provided the true electron mass m is replaced by the effective mass m∗ and the
relaxation time includes the effects of phonons.

Quantum mechanics of a single electron in a magnetic field7

Consider a single electron moving freely in a plane (the xy-plane) under the influence of a
magnetic field B normal to the plane. Classically, this is the E = 0 limit of the problem
studied above, so the drift velocity is zero and the electron simply executes a periodic
circular motion in the plane with the cyclotron frequency ωc ≡ eB/m (or in the more
general case eB/m∗). If we invoke the correspondence principle, we would infer that at
least in the large-amplitude (semiclassical) limit quantum-mechanical effects would give
rise to energy levels spaced by h/τ ≡ ~ωc. Let’s now see in detail how this comes about:

The free-electron Hamiltonian in the field Bẑ has the simple form:

Ĥ =
1
2
m(v̂2

x + v̂2
y) (13)

5Mostly connected with the possibility of Umklapp processes.
6At least in the limit ωcτ � 1.
7Yoshioka, sections 2.2-3.
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where v is the (kinematic) velocity operator: this is related to the canonical momentum
operator p̂ by

v̂ ≡ m−1(p̂− eA(r)) (14)

where the electromagnetic vector potential A(r) is related to the magnetic field B by
B = curlA. The components of the velocity fail to commute for finite A:

[v̂x, v̂y] =
ie~
m2

(∂xAy − ∂yAx) ≡ ie~
m2

B (15)

Let us introduce, as well as the characteristic unit of time ω−1
c , a characteristic length

lM ≡ (~/eB)1/2 whose significance will shortly become clear, and introduce a dimension-
less velocity V by

v ≡ (lM/τc)V ≡ (e~B/m2)1/2 (16)

Then the commutation relations of the components of V̂ are

[V̂x, V̂y] = i (17)

and the Hamiltonian has the form

Ĥ =
1
2

~ωc(V̂ 2
x + V̂ 2

y ) (18)

The problem defined by eqns. (17) and (18) is of course nothing but that of the simple
harmonic oscillator, and we can immediately write down the energy levels:

En = (n+
1
2
)~ωc (19)

which of course perfectly satisfies the correspondence principle.
However, since the original density of states (before the magnetic field was turned on)

was proportional to the area of the sample, and since the application of the magnetic field
cannot change the average DOS if taken over a sufficiently large energy range, it follows
that the energy levels we have found must be massively degenerate. Quantitatively, the
original DOS (per spin state per valley) was m/2π~2 per unit area of surface. The new
DOS is simply 1/~ωc, so it follows that the degeneracy per unit area must be

N = ~ωc(m/2π~2) ≡ eB/h (20)

In other words, for any given level n there is exactly one state per flux quantum h/e in
the plane. The different values of n are said to correspond to different Landau levels:
for our purposes the most important is the lowest Landau level (LLL) corresponding to
n = 0.

We now define a quantity which is central to the QHE, namely the filling factor ν.
For simplicity I first consider the case of a single “valley” and a single spin population.
Then the definition of ν is

ν ≡ filling factor ≡ no. of electrons / flux quantum (21)
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We need to digress briefly at this point to discuss possible “spin” and “valley” quasi-
degeneracies. Generally speaking, the Zeeman (spin) splitting EZ will be small compared
to the cyclotron energy ~ωc. At first sight this is surprising, since for a free electron the
ration is (close to) unity. However, if we consider for example GaAs, the g-factor is about
1/4 of the free electron value while the effective mass in only about 0.07 of that of a free
electron; thus the ratio EZ/~ωc is only about 0.015. As a result, if we could assume the
electrons in GaAs to be noninteracting, then the sequence of filling of the levels (n, σ)
(where n = 0, 1, 2 . . . denotes the Landau level and σ =↑, ↓ the spin projection on the
magnetic field) would be as follows:

0 < ν < 1 (0, ↑) partially filled, rest empty
1 < ν < 2 (0, ↑) completely filled, (0, ↓) partially filled, rest empty
2 < ν < 3 (0, ↑), (0, ↓) completely filled, (1, ↑) partially filled, rest empty

etc.

(22)

However, we cannot necessary assume that in the presence of the Coulomb interaction
this filling scheme is maintained (in so far as it makes sense to still talk of a “filling
scheme”); for example, we cannot exclude a priori a partial filling of (0, ↓) even for
ν < 1.

In systems such as Si where there is more than one “valley” (conduction-band mini-
mum) we need to take this also into account. However, there is an important difference
with the spin degree of freedom, since while surface effects are apparently sufficient to
reduce the six valleys of bulk Si to two, these two remain unsplit, and thus even with the
neglect of the Coulomb interaction the filling sequence is ambiguous. This consideration
is likely to matter most for the FQHE; however, fortunately the vast majority of exper-
iments on the latter have been done on GaAs heterostructures, where this complication
is absent (bulk GaAs has only one valley).

We will adopt the standard definition (21) of the filling factor ν independently of
the number of spin species and valleys. Then with this definition the experimental
finding is that the IQHE occurs around integral values of ν and the FQHE around odd-
denominator fractional values (except for ν = 5/2); in each case the Hall resistance is
h/νe2. Note that by contrast the traditional magnetic-quantization effects in 3D metals
(dHvA, etc.) correspond to values of the filling factor of order εF/~ωc & 104.

Representations of Landau-level wave functions

For the simple case considered so far (electrons moving freely in plane in constant mag-
netic field) the massive degeneracy of the wave functions corresponding to a given level
implies that many different representations are possible for the wave functions. However,
if the degeneracy is split (e.g. by a spatially varying electrostatic potential) then much
of this freedom is lost. Irrespective of this, and whatever the form of the potential, we
always have some freedom in choosing the gauge of the magnetic vector potential (recall
that given any vector potential A(r) which satisfies B = curlA, we can always make
the substitution A → A + ∇χ, where χ is an arbitrary single-valued scalar function,
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without changing the magnetic field B). Generally speaking, for any given choice of
scalar potential there exists a “natural” choice of gauge which makes the calculations of
the eigenfunctions easiest (though it is easy to find only in a few simple cases such as
those to be discussed).

Common to all representations is a particular characteristic length, which we have
already met, namely the magnetic length

lM ≡ (~/eB)1/2 (23)

Note that (a) this quantity is completely independent of all materials parameters (b)
the area corresponding to a single flux quantum is 2πl2M (c) the numerical value of lM
corresponding to a field of 1 T is approximately 250 Å.

One obvious representation is associated with the gauge choice A(r) = 1
2r×B. Then,

in the dimensionless units, we have

Vx ≡ ∂x −
1
2
y

Vy ≡ ∂y +
1
2
x

(24)

and the Schrödinger equation becomes

−
(
∂2

∂x2
+

∂2

∂y2
+

1
4
(x2 + y2)− i

(
x
∂

∂y
− y

∂

∂x

))
ψ = Eψ (25)

Suppose that we assume no dependence on the polar angle φ; then the last term on
the LHS vanishes and we have a simple 2D harmonic oscillator. The groundstate wave
function is given by

ψ0(r) =
√

2π
l

exp−r2/4l2 (26)

and higher LL’s are given in terms of the usual Hermite polynomials. However, if we
make this choice the origin can at first sight be anywhere. We know however that the
degeneracy must be 1/ flux quantum, so the “allowed” choices of origin are spaced by
∼
√

2πl. This choice may be actually convenient for potentials having a complicated
spatial variation.

A second representation is naturally associated with the so-called Landau gauge

Ax = −yB, Ay = Az = 0 (27)

The states corresponding to the n-th Landau level are given by

ψn(x, y) = exp(ikx) · φn(y − kl2) (28)

where φn(x) is the n-th linear oscillator state. Since for a finite slab the wave function
must satisfy periodic boundary conditions at the edges, k can take only the values 2πp/Lx

where p is integral. Also, if the states are confined in the y-direction with length Ly, k
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can (from (28)) take values only between 0 and Ly/l
2. This gives a total of LxLy/2πl2

states per Landau level which is right.
This representation is very convenient for considering the effect of a constant dc

electric field E . Suppose the field is in the y-direction. Then the Hamiltonian is still
invariant against translation in the x-direction, so we can take out a factor exp ikx as
before and write

ψn(x, y) = exp(ikx) · f(y) (29)

where f(y) obeys the Schrödinger equation(
− ~2

2m
∂2

∂y2
+

1
2m

(~k − eBy)2 − eEy
)
f(y) = Ef(y) (30)

(E is the total eigenvalue, not that associated only with the y-motion).
We define a “guiding center” coordinate y0 by

y0(k) = −kl2M + eEml4M/~2 (31)

and thus obtain{
− ~2

2m
∂2

∂y2
+mω2

c (y − y0)2
}
f(y) =

{
E + eEy0 −

m

2

(
E
B

)2
}
f(y) (32)

The solution is evidently a SHO eigenfunction Hn(y)e−y2/4l2M with energy

E(n, y0) = (n+
1
2
)~ωc − eEy0 +

m

2

(
E
B

)2

(33)

The interpretation of the three terms is that the first terms is the KE of cyclotron
motion, the second is the PE of the guiding center in the electric field potential −eEy
and the third is the KE associated with the classical drift velocity |v0| = E/B, which is
in the x-direction: to see that the QM expectation value of v0 is the same as the classical
value, write

v0 =
1
m
〈px + eyB〉 =

1
m

(~k + eyB) (34)

Using the relation (above) between y0 and k and the definition of l2M, this becomes

v0 = ωc〈y − y0〉+ el2ME/~2 = E/B (35)

so j = (eE/B)/L (since the expectation value of 〈x〉 vanishes for any SHO eigenstate
ψn(x)). Note that the above solution is exact8, independently of the relative magnitude
of E and B. Also note that the spacing of y0 and hence the DOS is independent of E .
It is intuitively plausible that the states we have constructed can be used to find an
approximate solution to the problem of quantum motion in a magnetic field and an
arbitrary strong, but slowly varying potential. In fact, it is fairly clear that provided
that the electrostatic potential (or more generally any kind of external potential, which

8In the nonrelativistic limit. Clearly if we were to take the limit B → 0 at finite E , the drift velocity
predicted by either the classical or quantum calculation → ∞ and eventually we have to worry about
relativistic corrections.
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should play the same role) is slowly varying on the scale of lM, we can obtain a solution
which looks locally like that above one, with E replaced by the local value of −∇V . The
locus of the “guiding center” of such a state should be a contour of constant V , and the
current carried by an electron in it should be given by

j = ev = − e

B
(ẑ ×∇V ) (36)

Notice that this current is divergence-free, as must be the case for an energy eigenstate:

div j ∼ div (ẑ ×∇V ) ≡ 0 (37)

We should expect intuitively (and it can be confirmed from a more detailed analysis) that
the average area corresponding to a single state is the area of a single flux quantum.
Note however that depending on the detailed geometry of the potential, some states
may be localized in the neighborhood of a potential minimum or maximum (circulating
clockwise around a minimum and anticlockwise around a maximum), while others may
be extended over the whole system.

We need still to consider one more representation, the
so-called circular or symmetric one. This is most naturally
associated with the radial gauge, which in plane polar co-
ordinates has the form Ar = 0, Aθ = 1

2rB. It is possible to
write down the exact form of (a possible set of) degenerate
eigenfunctions (cf. above): in fact, the n = 0 (LLL) have
the form, when expressed in terms of z = x+ iy,

ψ0,l(r, θ) ≡ ψ0,l(z) = const. zl exp−|z|2/4l2M (38)

However, it is actually more instructive to examine the approximate form of the wave
functions for large l. In terms of polar coordinates r, θ we have

− ~2

2m

{
1
r

∂

∂r
r
∂

∂r
+

1
r2

(
∂

∂θ
− ie

2
r2

~
B

)2
}
ψ(r, θ) = Eψ(r, θ) (39)

It is clear that it is possible to choose ψ(r, θ) to be of the form exp ilθ Rl(r) where to
preserve single-valuedness l must be integral: for a reason which will become clear we
also choose it to be positive. Then the radial wave function has the form

− ~2

2m

{
1
r

d

dr
r
dRl

dr
+

1
r2

(l − r2/2l2M)2
}
Rl(r) = ERl(r) (40)

It is intuitively clear that for large l the wave function Rl will be confined to a region
close to the value rl of r given by

rl ≡ (2l l2M)1/2 (41)
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Notice that a circular path with this radius encloses an area of 2πl l2M, i.e. exactly l
quanta of flux. For large l we can approximate the derivative term by d2Rl/dr

2, and
expand the “potential” term in powers of r−rl up to second order: in this way we obtain{

− ~2

2m
d2Rl

dr2
+

1
2
mω2

c (r − rl)2
}
Rl = ERl (42)

This equation, when expressed in terms of the variable x ≡ r − rl, is independent of l
and is exactly of the form of the TISE of a SHO with frequency ωc. Hence the solutions
are the usual Hermite polynomials Hn(r− rl) with energies En = (n+ 1/2)~ωc. For the
LLL, (n = 0), the extent of the wave function in the radial direction is ∼

√
~/mωc ∼ lM.

Since the spacing between rings is ∼ l−1/2lM, each radial wave function overlaps ∼ l1/2

of its neighbors (orthogonality is automatically guaranteed, within a given LL, by the
angular function). Note that the approximation is not valid for very small values of l.

With a view to a thought-experiment to be considered in the next lecture, we need a
slight generalization of the above argument. Consider a “Corbino-disk” geometry, that
is, the above disk with a circular hole in its center through which we can apply an AB
flux Φ. The generalization of eqn. (39) to this geometry is

− ~2

2m

{
1
r

∂

∂r
r
∂

∂r
+

1
r2

(
∂

∂θ
− iΦ

Φ0
− ie

2
r2

~
B

)2
}
ψ(r, θ) = Eψ(r, θ) (43)

The l-th state still encloses exactly l quanta of flux; the only difference is that now we
have

rl = (2(l − Φ/Φ0)l2M)1/2 (44)

With this choice of rl, eqn. (42) is unchanged.


