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Graphene I: Electronic band structure and Dirac fermions1

A suspended sheet of pure graphene – a plane layer of C atoms bonded together in a hon-
eycomb lattice – is the “most two-dimensional” system imaginable. Such sheets have long
been known to exist in disguised forms – in graphite (many graphene sheets stacked on top
of one another), C nanotubes (a graphene sheet rolled into a cylinder) and fullerenes (buck-
yballs), which are small areas of a graphene sheet sewn together to form an approximately
spherical surface. Moreover, it was appreciated that every time one writes on a sheet of
paper with a “lead” (i.e. graphite) pencil one probably produces the odd flake of graphene,
along with a whole lot of other by-products; however, until 2004, it was generally believed
(a) that an extended graphene sheet would not be stable against the effects of thermal and
other fluctuations, and (b) that even if they were stable, it would be impossible to isolate
them so that their properties could be systematically studied. In that year, André Geim
and his colleagues at the University of Manchester in the UK demonstrated that both these
beliefs were false: they created single graphene sheets2 by peeling them off a graphite sub-
strate using scotch tape, and characterized them as indeed single-sheet by simple optical
microscopy on top of a SiO2 substrate. (This procedure, which turns out to be exquisitely
sensitive to the details of the substrate, was an essential ingredient in the success of the
whole operation. A more recent and faster selection technique is Raman spectroscopy).
Subsequently it was found that small graphene sheets do not need to rest on substrates but
can be freely suspended from a scaffolding; furthermore, bilayer and multilayer sheets can
be prepared and characterized. As a result of these developments, the number of papers
on graphene published in the last few years exceeds 3000.

It was realized more than 60 years ago that the electronic band structure of graphene,
should it ever be possible to produce it, would be likely to be particularly interesting. Let
us start by considering a perfectly flat and pure free-standing graphene sheet, with the
standard periodic boundary conditions; subsequently we shall come back and consider how
the corrections to this zeroth-order model which certainly occur in real life may affect the
results. We start by setting up an appropriate notation. The electronic structure of an
isolated C atom is (1s)2(2s)2(2p)4; in a solid-state environment the 1s electrons remain
more or less inert, but the 2s and 2p electrons hybridize. One possible result is four sp3

orbitals, which naturally tend to establish a tetrahedral bonding pattern that soaks up all
the valence electrons: this is precisely what happens in the best known solid form of C,
namely diamond, which is a very good insulator (band gap ∼ 5 eV). However, an alternative
possibility is to form three sp2 orbitals, leaving over a more or less pure p-orbital. In that
case the natural tendency is for the sp2 orbitals to arrange themselves in a plane at 120◦

angles, and the lattice thus formed is the honeycomb lattice.
We note that there are two inequivalent sublattices, here labeled A and B, with the

1A good general reference for this and the next two lectures is A. H. Castro Neto et al., Revs. Mod.
Phys., 81, 109 (2009). See also Geim et al., Nature Materials 6 183 (2007).

2And also single-atom-thick sheets of a number of other materials such as BSCCO.
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environments of the corresponding atoms being mirror images of one another. It is conve-
nient to choose our Bravais lattice to have primitive lattice vectors a1, a2 given as shown
by
(
the notation is (x, y)

)
a1 =

a

2

(
3,
√

3
)
, a2 =

a

2

(
3,−

√
3
)

(1)

where a is the nearest-neighbor C-C spacing (≈ 1.42 Å). The reciprocal lattice vectors b1, b2

defined by the condition ai · bj = 2πδij are then

b1 =
2π
3a

(
1,
√

3
)
, b2 =

2π
3a

(
1,−

√
3
)

(2)

We define the first Brillouian zone of the reciprocal lattice in the
standard way, as bounded by the planes bisecting the vectors to the
nearest reciprocal lattice points. This gives an FBZ of the same form
as the original hexagons of the honeycomb lattice, but rotated with
respect to them by π/2.

It is clear that the six points at the corners of the FBZ fall into two groups of three
which are equivalent, so we need consider only two equivalent corners that we label K and
K ′ as in the figure. Explicitly, their positions in momentum space are given by

K =
2π
3a

(
1,

1√
3

)
, K ′ =

2π
3a

(
1,− 1√

3

)
(3)
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It is convenient to note at this point that for an A-sublattice atom the three nearest-
neighbor vectors in real space are given by

δ1 =
a

2

(
1,
√

3
)
, δ2 =

a

2

(
1,−

√
3
)
, δ3 = −a(1, 0) (4)

while those for the B-sublattice are the negatives of these.
For a first approach to the electronic band structure, let’s start by

FBZ

modeling it by a tight-binding model with nearest-neighbor hopping
only: The relevant atomic orbital is the single (pσ) (or more correctly
π) C orbital which is left unfilled by the bonding electrons, and which
is oriented normal to the plane of the lattice: as usual, this orbital
can accommodate two electrons with spin projection ±1. If we denote
the orbital on atom i with spin σ by (i, σ), and the corresponding
creation operator by a†iσ(b†iσ) for an atom on the A(B) sublattice, then
the nearest-neighbor tight-binding Hamiltonian has the simple form

ĤTB, n.n. = −t
∑

ij=n.n.
σ

(a†iσbjσ + H.c.) (5)

The numerical value of the nearest-neighbor hopping matrix element t, which sets the
overall scale of the π-derived energy band, is believed to be about 2.8 eV; the exact value
is unimportant for subsequent results. We shall first explore the band structure, and the
nature of the electronic states, generated by the simple Hamiltonian (5), and later examine
how these are affected by corrections to it.

It is convenient to write the TB eigenfunctions in the form of a spinor, whose compo-
nents correspond to the amplitudes on the A and B atoms respectively within the unit cell
labeled by a reference point R0

i . It is a matter of convention how we choose the pair A
and B and the point R0

i , but for definiteness, let us choose B to separated from A by δ1

and R0
i at the position of A1 as shown. Then the TB eigenfunctions have the form (apart

from the spin index)

B

A

(
αk

βk

)
=
∑

i

exp ik ·R0
i

(
a†i e

−ik·δ1/2

b†i e
ik·δ1/2

)
(6)

where b†i creates an electron on the B atom in cell i. The fac-
tor e±ik·δ/2 in the spinor components is inserted in order to sim-
plify subsequent expressions. The resulting Hamiltonian in the k-
representation is purely off-diagonal in this representation:

Ĥk =
(

0 ∆k

∆∗
k 0,

)
∆k ≡ −t

3∑
l=1

exp ik · δl (7)
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From the explicit expressions (4) for the nearest neighbor vectors δl we obtain

∆k = −t exp−ikxa

(
1 + 2 exp

(
i · 3kxa

2

)
cos

√
3
2
kya

)
(8)

Evidently the eigenvalues of H, εk are given by

εk = ±|∆k| = ±t

(
1 + 4 cos

3kxa

2
cos

√
3
kya

2
+ 4 cos2

√
3
2
kya

)
(9)

(
which some elementary algebra shows is identical to CN’s eqn. (6)

)
. It is interesting to

enquire whether there are any values of k for which ∆k (hence εk) is zero? Any such value
must satisfy the conditions

3kxa

2
= 2nπ, cos

√
3

2
kya = −1/2 (n integral) (10)

or
3kxa

2
= (2n+ 1)π, cos

√
3

2
kya = +1/2

The first choice takes ky outside the FBZ, but the second (with n = 0) is satisfied exactly
at the “corner” points K and K ′ which we previously identified; for a reason that will
soon be clear, these points are called the “Dirac points”.

The first significant feature of this result is that, since the energy band is exactly
symmetric about the point εk = 0, and this condition is met only at the two Dirac points
(not, as in a typical textbook metal, over a complete surface (in 2D line) of k-values), it
follows that for exactly half filling of the band the DOS at the Fermi level is exactly zero.
But in the absence of doping graphene has exactly one electron per “spin” per atom (2
per unit cell), so taking spin into account the bond is indeed exactly half filled. Thus,
undoped graphene is a perfect semimetal! 3 It is helpful to visualize what is going on at the
Dirac points in terms of the amplitudes for the electron to be on the A or the B sublattice.
Since the two sublattices are physically equivalent, it is clear that when the state is on
energy eigenfunction then, apart possibly from trivial phase factors involved in the precise
definition of the ai and bi, the behavior must be either symmetric or antisymmetric with
respect to the exchange of A and B. For example, for k = 0 there are two possibilities:
either ai = bi, giving energy −3t, or ai = −bi, giving energy +3t. For k 6= 0 the effective
“lumped” matrix element for tunneling between the two sublattices is given precisely by
∆k:

∆k ≡ −t
2∑

l=1

eik·δl (11)

3A semimetal is defined as having zero DOS for ε = 0 (where ε is the energy measured with respect to
the Fermi energy) but a nonzero DOS for ε > 0.
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so the two energies are ±|∆k| as we have seen. However, at a Dirac point ∆k tends to zero,
so the relative signs (phases) on the two sublattices are completely arbitrary; in particular
we can if we wish choose the energy eigenstate to be localized completely on sublattice A
or sublattice B, with the other sublattice totally unoccupied. Note also that at the Dirac
points, the phase shift on going from one unit cell to the next is ±π/3.

We now discuss the nature of the energy spectrum and eigenfunctions for k close to a
Dirac point (let us say for definiteness the point K). It is convenient to define the (2D)
vector k−K as q. Then, expanding the expression for ∆k around q = 0, we find

∆(q) = 2e−iKxaq ·∇k

(
e3ikxa/2 cos

√
3
2
kya

)
k=K

= − 3t
2a

(exp−iKxa)(iqx − qy). (12)

It is convenient to extract an overall constant factor −i exp−iKxa (which clearly does not
affect any physical results) and thus write

∆(q) = ~vF(qx + iqy)
(

+O(q/K)2
)
, vF ≡ 3t/2~a ∼= 106 m/sec. (13)

Note that if we had expanded around K ′ (for which K ′
x ≡ Kx,K

′
y ≡ −Ky) we would have

obtained
∆K′(q) = ~vF(qx − iqy) = ∆∗

(K)(q) (14)

i.e. with the same convention for q, the “helicity” is reversed.
It is very suggestive to write the Hamiltonian in the form

Ĥ ≡ ~vF
(

0 qx + iqy
qx − iqy 0

)
≡ ~vF σ̂ · q, ε(q) = ±vF|q| (15)

where the components of the operator σ̂ are the usual4 Pauli matrices. It is clear that the
eigenvalues are a function only of the magnitude of q, not its direction in the 2D space:

ε(q) = ±~vF|q|. (16)

The Hamiltonian (15) is, from a formal point of view, exactly that of an ultra-relativistic
(or massless) particle of spin 1/2 (such as the neutrino), with the velocity of light c replaced
by the Fermi velocity vF, which is a factor ∼ 300 smaller. Moreover, the “left-handed neu-
trino” given by (13) is not equivalent to the “right-handed antineutrino” that lives near
K ′ rather than K. Thus there arises the prospect, which excites a lot of people, of finding
analogs to many phenomena predicted to occur (but often not yet seen experimentally) in
a solid-state context. However, it should be remembered that the Dirac excitations near
K are not the antiparticles of those near K ′; rather it is the two possible combinations of

4But strictly speaking, to make it equivalent for the Dirac point at K we would need to adopt an
unconventional definition of “handedness.”
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the excitations near one Dirac point on the A and B sublattices, with energies ±~vF|q| re-
spectively, which are one another’s “antiparticles.” The eigenfunctions are, for the vicinity
of the point K.

ψ±(K)(q) =
1√
2

(
exp iθq/2

± exp−iθq/2

)
, θq ≡ tan−1(qx/qy) (17)

Note that when q rotates once around the Dirac point, the phase of ψ(±)
K (q) changes by π,

not by 2π, as is characteristic for “spin-1/2” particles.
It is now straightforward to obtain quantities such as the DOS and cyclotron mass. It

is clear that for nonzero ε the DOS will be proportional to the number of states that have
|q| = |ε|/~vF; specifically, since the number of states with q-values less than q close to a
specific Dirac point is q2/2π, the DOS associated with this point is

nK(ε) =
1

~vF
dnK

dq
=

1
(~vF)2

ε (18)

Since there are two Dirac points, the total DOS is twice this.
These results have an interesting consequence for the effect

of doping. At zero doping, as we have seen, the lower half of the
band is filled exactly up to the Dirac points. If by applying a
suitable “gate” voltage to the graphene relative to the substrate
(or suspension) we induce a nonzero charge, this is equivalent
to injecting (depending on the sign of the voltage) a number of
electrons in the upper half of the Dirac cones or holes in the lower
half; for definiteness let’s consider the former. If the temperature
is low enough, the electrons will form a degenerate Fermi sea and we can define a “Fermi
surface” (in 2D a line) and the corresponding Fermi wave vector qF. Taking into account
the spin and “valley” degeneracies, we find (cf. above)

qF = (πns)1/2 ns ≡ no. of (extra) electrons/unit area (19)

We can define an “effective mass” m∗ in the usual way by m∗ ≡ ~qF/vF, and then find
that

m∗ =
π1/2~
vF

n1/2
s (20)

In a textbook 3D solid, the most direct way of measuring the effective mass m∗ is through
the specific heat. In a 2D system such as graphene such a measurement is not usually
practical, but one can alternatively use the fact that for an isotropic system the mass
measured in a cyclotron resonance experiment (“cyclotron mass”) is identical to the m∗

defined above. (This is because the cyclotron mass m∗
c is quite generally given, in the

semiclassical limit, by the expression m∗
c = (1/2π)(∂A/∂ε), where A is the k-space area
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enclosed by an orbit of energy ε; for our case this expression is just ~
vF
qF. i.e.equal to m∗).

Cyclotron resonance experiments on graphene verify that m∗ is indeed proportional to n1/2
s

as predicted (see CN fig. 4).
We now turn to the question of corrections to the simple results derived above. The

most obvious correction comes from second-nearest-neighbor hopping, with some matrix
element t′ (clearly, in the honeycomb lattice all second-nearest neighbors are on the same
sublattice as the original atom and are equivalent). This gives rise to a term5

Hn.n.n. = − t
′

2

∑
i,j=n.n.n.,σ

(a†iσajσ + b†iσbjσ + H.c.) (21)

The most salient feature of this term is that it is exactly symmetric between the A and B
sublattices; hence, it gives a contribution −t′f(k), which is proportional, in the “spinor”
representation, to the unit matrix. Such a term destroys the perfect symmetry of the band
around ε = 0 (since the term −t′f(k) is added to both the upper and the lower branches);
however, it cannot spoil the degeneracy of the two solutions at the Dirac points K and
K ′ (which, however, no longer in general correspond to ε = 0 but to some shifted value
ε0 = −t′f(K); we may as well shift the zero of energy to this point).

It might, however, be wondered whether by affecting the absolute energies of the states
close to the Dirac point the term (21) spoils the simple results we have obtained e.g. for
the cyclotron resonance frequency. Fortunately this is not the case: the Dirac points are
actually extremes of the quantity f(k)! To see this, note that the explicit expression for
this quantity is

f(k) = −t1/2
∑

ij=n.n.n.

(exp ik ·Kij + H.c.) ≡ −t′
∑

ij=n.n.n.

cosk ·Rij (22)

Now the next-nearest-neighbor values of Rij are the primitive lattice vectors ai,aj ,ai−aj

and their negatives, so we have

f(k) = −

{
2 cos

(√
3 kya

)
+ 4 cos

(√
3

2
kya

)
cos
(

3
2
kxa

)}
t′ (23)

It may be verified that the value of f(k) at the Dirac points is +3t′ and its gradients
there zero. Thus, even in the presence of next-nearest-neighbor hopping the form of the
Hamiltonian near a Dirac point is given, up to the uninteresting constant 3t′, by eqn.
(15). When one goes up to terms of order q2, one finds that while the t′ term is isotropic
around K (as one might perhaps anticipate from its sixfold symmetry) the original t term
introduces a “trigonal” dependence (∼ sin 3θq, where θq ≡ tan−1 q/qx). However, the order

5The factor 1/2 is to avoid overcounting. If the prefactor is t′ then the sum should be only over “positive”
next nearest neighbors.
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of magnitude of this term is ∼ q/K relative to the “Dirac” one, and it is usually neglected
in analysis of experiments.

While the simple Dirac-like form of the Hamiltonian (15) is very pleasing, one might
ask how generic it is? So far we have considered only nearest- and next-nearest neigh-
bor hopping; would (for example) further-neighbor hopping spoil the results? And on
exactly which properties of the honeycomb lattice do they depend? Here are some (fairly
undigested) thoughts.6

First, it seems virtually certain that provided it does not become ferromagnetic (some-
thing for which there is no experimental evidence nor, as far as I am aware, theoretical
support), undoped graphene must be either a semimetal or a semiconductor. This follows
simply from the fact that there are two atoms per unit cell, and thus for each k within the
FBZ there must be two energy eigenstates, which in general are nondegenerate. Whether
they repel to give a standard band gap as in a textbook semiconductor, or touch as in the
simple model explored above, there is room in the lower band (including spin) for exactly
the 2 valence electrons per unit cell that are available in graphene.7 The only escape from
this conclusion would appear to be if the energy of the “upper” band for some k wave to
term set to be lower than that of the “lower” band for a different k; this is forbidden in
1D, but as far as I know there is no general principle that forbids it in 2 (or 3) D. However,
there seems no reason, theoretical or experimental, to believe that this situation occurs in
real-life graphene. Note that the conclusion does not depend on symmetry between the A
and B sublattices.

Secondly, I strongly suspect that given the symmetry of the Hamiltonian under A→ B,
the existence of a couple of “Dirac points,” that in points where the energy bands touch,
is generic. This will be the case if we can always find two points within (or on the edge of)
the FBZ such that for this k the total coupling between the A and B sublattices vanishes,
since then we have two completely equivalent excitations localized on one sublattice or the
other.

It should be noted that the introduction of any kind of asymmetry in the Hamiltonian
between the A and B sublattices, such as might occur for example on certain corrugated
substrates, is liable to lift the degeneracy at the Dirac points, since the Hamiltonian can
then be written in the form, up to a constant

Ĥ =
(

∆ε/2 vF(qx + iqy)
vF(qx − iqy) −∆ε/2

)
(24)

with eigenvalues
E+,− =

(
(∆ε)2 + vF

2|q|2
)1/2 (25)

introducing an energy gap ∆ε at the Dirac point q = 0.
6I may try to amplify these remarks in the lecture.
7This argument is of course just a special case of the familiar textbook argument that crystalline systems

with an even number of electrons per unit cell must be insulators (or semiconductors).
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(tilde - top layer, 
no tilde- bottom layer)

Figure 2:

Thirdly, provided the residual terms in the Hamiltonian may be treated as perturbations
on the ones we have explicitly considered, one feature of the spectrum near the Dirac point
should be very stable, namely the topological property that contours in q-space surrounding
it have a winding number of 1; that is, the phase of the off diagonal term in the Hamiltonian
changes by 2π (not 0 or 4π) when we consider the Dirac point in q-space. This property of
the spectrum is crucial to the explanation of the anomalous QHE seen in graphene (next
lecture).

We now turn to bilayer graphene. This system has been stabilized experimentally, and
has some very interesting properties, so it is worthwhile to study its energy spectrum.
Unfortunately the problem is complicated by the fact that the stacking is not of the simple
form where each A(B) atom in the top layer lies directly above one A(B) atom in the
bottom layer; rather, it is of the “Bernal” type, in which one A atom in the top layer
(denoted Ã) lies above a B atom (denoted B) in the bottom layer, so that B̃ cannot lie
directly above A. In fact the positioning is as drawn in Fig. 2.

We would expect a substantial hopping between Ã and B atoms (recall that the C
valence electrons are in π orbitals that “stick out” of the plane) and a weaker possible
hopping between A and B̃ atoms (also A � Ã, B � B̃). For simplicity let us keep only
Ã � B hopping and denote the relevant matrix element by γ. In the simplest model of
the in-plane hopping the Hamiltonian is then

Hbil = −t
∑

ij=n.n.

{
(a†ibj + H.c.) + (ã†i b̃j + H.c.)

}
− γ1

∑
i

(ã†ibi + H.c.) (26)

where ã†i (a
†
i ) creates an electron on site Ã(A), etc., When we now define a Fourier trans-

forms in the standard way, the last term in (26) picks up no k-dependence, as ãi and b†i
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operate at the same point in the xy-plane. Thus if we define a 4-dimensional spinor, in an
obvious notation

ψ ≡


ψA

ψB

ψÃ
ψB̃

 (k) (27)

the corresponding Hamiltonian Ĥk has the form

Ĥk =


0 vF(qx + iqy) 0 0

vF(qx − iqy) 0 γ1 0
0 γ1 0 vF(qx + iqy)
0 0 vF(qx − iqy) 0

 (28)

The crucial point, now, is that for |q| → 0, i.e. as we approach the Dirac point, we
automatically have γ1 � vF|q|, and thus the primary concern is to properly “dimerize”
the Ã − B band. Let’s examine what happens exactly at the Dirac point. There is one
symmetric combination (ψÃ = +ψB, ψA = ψB̃ = 0) with low energy −γ1, one high-energy
combination (ψÃ = −ψB, ψA = ψB̃ = 0) and two zero-energy states, which we may for
example take as localized on the A and B̃ sublattices respectively. More generally, for
arbitrary values of k in the FBZ we expect a low-energy (symmetric Ã− B) band, which
will certainly be filled, a high-energy (antisymmetric Ã−B) band, which will certainly be
unfilled, and two states which, at least for vF q . γ1, are mainly linear combinations of
the A and B̃ sites. The interesting point is that for undoped bilayer graphene, by simple
counting of the states, exactly one of the two “A− B̃” bands will be filled. So it becomes
essential to work out the effective Hamiltonian within this 2D space.

The most intuitive way to do this is the following: Consider a process in which an
electron hops from A on to the “B part of” this (unoccupied) antisymmetric Ã−B band,
then from Ã on to B̃ (all the time keeping its k-vector close to (say) the Dirac point K).
The effective matrix element for this 2-step process is, since the sign of the probability
amplitude in the unoccupied (antisymmetric) Ã−B state is opposite on Ã and B,

Veff(A→ B̃) = −
VA→(Ã−B)V(Ã−B)→B̃

E(Ã−B)

(29)

Since the matrix element to hop from A to B is the same as that for Ã → B̃, (not its
complex conjugate!), and the energy denominator is just γ1, this gives

Veff(A→B̃) =
(VF (qx + iqy))

2

γ1
(30)

i.e. the effective Hamiltonian in the A− B̃ subspace is

ĤA−B̃ = (v2
F /γ1)

(
0 (qx + iqy)2

(qx − iqy)2 0

)
(31)
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so that (in the absence of an interlayer bias) the spectrum is parabolic around the Dirac
point, and moreover the winding number is 2 rather than 1. This is of importance for the
analysis of the behavior of the system in a magnetic field, in particular of the QHE.

However, it should be noted that in contrast to the single-layer case, where it is rather
difficult to bias one sublattice relative to another, in the bilayer case described by (28)
the two “basis” states A and B̃ lie in different layers, so it is relatively easy to bias them
relative to one another. In that case it is easy to see that a band gap is introduced at the
Dirac point, in fact mainly

E(q) = (E0 + vF
4q4/γ2

1)1/2. (32)

In real life the situation is rather more complicated because, inter alia, of the effects of the
A � B̃ hopping: see CN.


