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Graphene II: quantum Hall effect.

To introduce the subject of the QHE in graphene, let’s start by considering the doping
process. In the original experiments of Geim et al., the graphene layer was placed on
top of a ∼ 300 nm thick SiO2 slab and a gate voltage applied to it relative to the back
face of the slab. Since the capacitance of the condenser so formed is εε0A/d where d is
the thickness and ε the dielectric constant of SiO2, this gives for surplus electron (hole)
number density per unit area

ns = CVg/e = (εε0/de)Vg ≈ 7.2× 1010 cm−2 (1)

Notice that Vg and hence ns can have either sign (nega-

SiO2 Vgd

graphene
tive ns means hole doping). It is possible to check eqn. (1)
by measurements of the Hall effect in the “unquantized”
regime, which is well attained at room temperature (cf. be-
low), and it seems to be valid; that is, the Hall resistance
RH is given by 1/nse with ns given by eqn. (1).1 It is
possible to apply voltages up to ∼ 100 V without breakdown of the SiO2 and thus to
obtain areal densities up to ∼ 1013 cm−2, one or two orders of magnitude higher than
what is usually possible in Si MOSFET’s or GaAs heterostructures. Mobilities µ of
up to ∼ 15000 cm2/V sec are routinely obtained; since they are almost temperature-
independent, the belief is that they are due to impurity scattering and thus it may be
possible to improve µ by around an order of magnitude. In fact, in a very recent experi-
ment on a suspended graphene sheet, the mobility was 2.6×105 cm2/V sec, corresponding
to a mean free path of ∼ 0.35µ (comparable to the sample dimension).

Because of the unusual energy spectrum of the carriers in graphene, it is necessary to
reconsider several of the standard formulae used in discussing the QHE, and in particular
the dependence of various characteristic energies on ns, B etc. In a traditional QHE
system, the characteristic constant describing the spectrum (m∗) has the units of mass,
while in graphene the spectrum is parametrized by the Fermi velocity. As we have seen,
the DoS close to the Dirac points is linear in energy: taking into account the spin and
valley degeneracy, we have

ns = q2F/π (2)

and hence the Fermi energy is given by

εF ≡ ~vFqF = ~vF(πns)1/2 (3)

For ns = 1013 cm−2 εF is ∼ 4000K, meaning that most of the samples studied are highly
degenerate at room temperature. Note that for very small dopings εF can exceed the
bias energy eVg, so that further analysis of the doping process may be necessary in this
regime.

Next, let’s consider the mean free path. Just as in the standard case, the conductivity
σ and mobility µ are related by σ = nseµ (from which we may obtain the experimental

1In the original experiment an “offset” voltage V0 ∼ 50V was seen, i.e. ns ∝ (Vg − V0) rather than
∝ Vg; also the relation was not linear for small ns. These effects have been removed in subsequent
experiments.
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value of µ) and we may write
µ = eτ/m∗

F (4)

where τ is the (elastic) collision time andm∗
F the effective mass at the Fermi energy. How-

ever, unlike in the standard case, this latter quantity is itself strongly filling-dependent,
so it is easier to write µ in terms of the elastic mean free path l:

µ = el/m∗
FvF ≡ el/~kF = (e/~)l/(πns)1/2 (5)

The conductivity (in zero magnetic field) is therefore given by

σ =
e2

h
l(πns)1/2 ≡ e2

h
(kFl) (6)

Consider next the energies associated with an external magnetic field. The g-factor
of the π-electrons in graphene is very close to 2, so the Zeeman energy should be given
by the usual expression 2µBB = (e~/m)B where m is the bare electron mass and B
the total field (independent of orientation). By contrast, the orbital (cyclotron) mass
is strongly energy-dependent: if we evaluate it at the Fermi energy we have for the
cyclotron energy

~ωc ≡ e~B/m∗ = evFB/kF ∝ n−1/2
s (7)

(where B is now the field component normal to the plane). At ns ∼ 1012 cm−2 the
cyclotron mass is about 0.02 of the bare mass, so similarly to GaAs heterostructures
the cyclotron energy is a factor of order 50 times the Zeeman term; we therefore expect
the considerations about the order of filling of Landau levels to be qualitatively similar
(with one proviso discussed below).

Finally we consider the Coulomb energy. For a free graphene sheet the situation
is straightforward: since the system is truly 2D, and in addition the polarizability of
the C core levels is small, the interaction between the π∗-band conduction electrons
(or the π-band holes) should have more or less the free-space Coulomb form e2/4πε0r.
For the case of epitaxial graphene things are somewhat less clear, since even if the
substrate has a large dielectric constant ε it occupies only a half-space; in the literature
this complications seems often to be ignored and one writes the Coulomb interaction
as e2/4πεε0r. If we put in numbers, then the “characteristic” Coulomb energy (the
Coulomb interaction evaluated at the magnetic length lM ≡ (~/eB)1/2 is about 50 meV
(600 K) at 1 T for freely suspended graphene, and of order ε−1 times this for the epitaxial
configuration. Note that at a given value of filling fraction ν the ratio of Vc to ~ωc is
independent of the areal density:

Vc/~ωc =
1
2
ν1/2αg αg ≡

e2

4πε0~vF
(8)

(αg is the “graphene fine structure constant”, ∼ 2).
Let’s now analyze the structure of the wave functions and energy levels near a Dirac

point in a magnetic field. Since the field necessary to generate a flux of the order
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of φ0 through a single plaquette of the honeycomb lattice is enormous (∼ 10 kT) at
“reasonable” laboratory fields we can proceed as in the standard (GaAs-like) case and
treat the momentum p which occurs in the energy spectrum (which is actually a crystal
quasimomentum) as equivalent to a real momentum. The Hamiltonian matrix (eqn. (15)
of lecture 21) is then modified by the standard “minimal-coupling” replacement p →
(p− eA(r)) ≡ π, i.e.

Ĥ =
(

0 vFσ̂ · π̂
vFσ̂ · π̂† 0

)
(9)

We note that just as in the standard case the operators π̂x, π̂y fail to commute:

[π̂x, π̂y] = ie~Bz (10)

At this point it actually becomes advantageous to re-define our “cyclotron frequency”
(energy) so as to make it a function only of B and independent of ns: thus, we define

ω0 ≡ vF/lM (11)

It is easy to see, using ns = (2πl2M)−1 that ω0 is related to the ωc defined above by

ω0/ωc =
1
2
ν−1/2 (12)

so that
Vc/~ω0 = αg (13)

independently of ν. From now on we can forget about ω0, which has no real physical
significance; as we may anticipate from (9) and (11), it is ω0 which controls the energy
spectrum of the Landau levels.

Just as in the standard case, we may solve for the energy eigenvalues and eigenfunc-
tions in any convenient gauge (and, just as there, we expect that the explicit form of the
eigenfunctions will depend on the gauge but the eigenvalues will not). It is convenient
to consider a disk geometry.

It is straightforward to obtain the eigenvalues of the Hamiltonian (9). Let’s rewrite
it in terms of the cyclotron frequency ω0 defined by eqn. (11): defining dimensionless
operators Π̂i ≡ lMπ̂i/~, we have

Ĥ =
~ω0√

2

(
0 Π̂x + iΠ̂y

Πx − iΠ̂y 0

)
(14)

with the commutation relations
[Π̂x, Π̂y] = i (15)

We take the square of (14); using (15), the result is

Ĥ = (~ω0)2
(

Π̂2
x + Π̂2

y + 1 0
0 Π̂2

x + Π̂2
y − 1

)
(16)



PHYS598PTD A.J.Leggett Lecture 22 Graphene II: quantum Hall effect 4

}
}

}

}

But the expression Π̂2
x + Π̂2

y, with the commutation relation (15), is just twice the
Hamiltonian of the simple oscillator in units of ~ω0, (Π̂x → x̂, Π̂y → p̂), so we know that
the possible eigenvalues are 2n+ 1, n = 0, 1, 2 . . .. Thus, we find the fundamental result
for the eigenvalues En of Ĥ

En = ±
√
n~ω0, n = 0, 1, 2 . . . (17)

A crucial point to note is that while for n 6= 0 the eigenvalues come in pairs, one
in the π∗ band (+ sign) and one in the π band (− sign), the eigenvalue with n = 0
is nondegenerate. As we shall see below, each eigenvalue corresponds to a complete
Landau level, and this includes the n = 0 case. Consequently, since on a scale large
compared to ~ω0 the number of states must be conserved, we find that each Landau
level “condenses” the original states in an energy region around it containing exactly Nφ

states (Nφ ≡ number of flux quanta = A/2πl2M). Because the density of states in zero
field is proportional to ε, this means that the actual width in energy of the portion of
the band so condensed varies roughly as n−1/2. In particular, the n = 0 state condenses
all the states in both the π∗ and the π band, which have |ε| < 1

2~ω0. The n = 0 state
(“zero mode”) is thus completely symmetric between the “electron” (π∗) and “hole” (π)
states.

What do the actual wave functions of the different Landau levels look like? This is
of course depends on the gauge. Let’s consider a disk geometry and choose the radial
gauge, in which the vector potential A(r) has the form Brφ̂. Then, using the result
∂x ± i∂y = e±iφ(∂r ± i∂φ), we find

Ĥ = ~vF
(

0 ieiφ(∂r + i∂φ − r/l2M)
ie−iφ(∂r − i∂φ − r/l2M) 0

)
(18)

Evidently, the solution should have the form(
f(r)eilφ

g(r)ei(l−1)φ

)
(19)

At the present stage the detailed form of the functions f(r) and g(r) is not important:
what is important is that, just as in the standard case, there is for each LL exactly one
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solution associated with each value of l, which encloses (approximately) l quanta of flux.
Hence the total number of states in each LL is exactly the number of flux quanta, just
as in the standard case. Moreover, we can consider a Corbino-disk geometry and replay
the Laughlin-Halperin argument: increase of the AB flux through the hole by one flux
quantum pushes exactly one state across the disk, returning the system to its original
state.

What are the consequences for the QHE? As in the standard case, we expect the
latter to occur when the chemical potential is pinned between Landau levels by localized
impurity states. This should happen close to the values of ν for which we get filling
of an integral number of LL’s. At this point we need to remember two things: First,
since the n = 0 LL condenses only half of its levels from (say) π∗ band, the points
corresponding to exact filling of an integral number of LL’s are shifted byNφ/2 from their
values for the standard case. Secondly, what about the spin and valley degeneracies?
The valley degeneracy is completely unsplit;2 as to the spin degeneracy, everything
seems consistent with the hypothesis that this is effectively unsplit in the fields (. 15 T)
currently available. If that is correct, then the total degeneracy is 4, so one should find
that the QH plateaux should occur close to the values of ν given by

ν = 4n+ 2 (20)

where n can be positive, zero or negative; note that the plateaux at ν = 2 and −2
correspond to the filling/emptying of the same LL, n = 0.

What about the value of the Hall conductance Σxy on the plateau? Intuitively, since
we wish to get agreement with the classical result when ν is exactly 4n + 2 ≡ ν0, this
should be given by the same expression as in the standard case, namely

Σxy = ν0e
2/h = (4n+ 2)e2/h (21)

on the n-th plateau. The part involving 4n is straightforward, since all the LL’s other
than the lowest evidently transfer exactly 4 electrons per flux quantum. But what about
the contribution of the “zero mode”? To discuss this we need to get into a little more
detail on the form of the spinor components.

Using the correspondence of Π̂x, Π̂y to the dimensionless coordinate x̂ and momentum
p̂ of the simple harmonic oscillator, and the fact that the creation (annihilation) operator
of the excitations (quanta) of the latter have the form 2−1/2(x̂− ip̂) (2−1/2(x̂+ ip̂)), we
can rewrite the Hamiltonian (14) in the suggestive form

Ĥ = ~ω0

(
0 a
a† 0

)
(22)

(where the index which specifies the massive degeneracy within the LL is omitted, since
it depends on the gauge). The form of the spinor energy eigenfunctions χn is in general

χn =
1√
2

(
ψn−1

ψn

)
, En =

√
n~ω0 (23)

2In the approximation of A 
 B symmetry.
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Of course, the actual expression for the spinor components ψn(r) depends on the gauge;
e.g. for the radial gauge they have the form ψn(ξ) = Hn(ξ) exp−ξ2/2 where Hn is a
Hermite polynomial and ξ is, apart form a factor, r − rl where rl is the radius which
encloses l flux quanta. Recalling that the two spinor components correspond to the
amplitudes to be on the A and B sublattices respectively, we see that for n 6= 0 we have
equal amplitudes to be on each sublattice.

But what about the case n = 0? The function ψ−1 does not exist, so in this case we
have simply

χ0 =
(

0
ψ0

)
(24)

i.e. the state is entirely localized on the B sublattice! At first sight this looks strange,
since at a fundamental level the A and B sublattices should be completely equivalent.
However, they are not equivalent once we specify that the wave vector of interest is close
to (say) Dirac point K rather than K ′ and also apply a magnetic field; this is clear from
the fact that the helicity of the original Hamiltonian matrix element σ ·p may be either
parallel or antiparallel to the field. When we go from the Dirac point K to point K ′, the
effect is to reverse the “intrinsic” helicity, and hence to interchange a and a† in eqn. (22);
the result is that the zero mode associated with the valley K ′ is entirely localized on the
A sublattice, thereby restoring the symmetry.

The crucial question now is: If the n = 0 LL is filled, how much does it contribute
to the Hall conductance? In the original experimental paper it is argued that since in
all the n 6= 0 LL’s both pseudospin states are populated whereas in the n = 0 level
only one is, the density of states in the latter is 1/2 that of the other LL’s and thus it
contributes only 1/2(e2/h) per spin and valley. This argument does not seem entirely
satisfactory since any given LL function is normalized to 1 independently of whether
it involves one or two pseudospin components. A second argument, which is given in
various theoretical papers, is that for any given value of n other than zero there are two
solutions (ψn−1 = ±ψn) while for n = 0 there is only one, and “therefore” the n = 0 level
contributes only half the usual e2/h per spin/valley. The problem with this argument is
that for n 6= 0 one of the solutions has negative energy, and thus is already completely
filled at zero doping; however, we do not want a nonzero conductance at this point! A
third argument3 rests on explicit consideration of the edge states; unfortunately, while
for one type of edge (the so-called “zigzag” type, see next lecture) this argument produces
quantization at (n+ 1/2)(e2/h) per spin/valley, for the other (“armchair”) type it gives
the conventional result ne2/h. It is rather puzzling that the result should be so sensitive
to the exact nature of the edges, particularly since for a sample of “ragged” shape this
is not necessarily uniformly defined.

My own tentative interpretation of the situation is as follows. Imagine first, that in
the absence of a magnetic field the spectrum near the Dirac point has a small gap ∆ε
(such as might, for example, be produced by a week spin-orbit interaction, cf. lecture
21), and we consider the situation at zero doping and T = 0. By the standard textbook
arguments, the system is an ordinary band insulator, i.e. Σxx = Σxy = 0. Next, suppose

3Peres et al., Phys. Rev. B73, 195411 (2006).
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Figure 1: (Adapted from Novoselov et al., 2005.)

that we switch on a weak magnetic field, such that ~ω0 � ∆ε. This should produce
no mixing-in of the conduction band states, so the many-body wave function remains
an antisymmetrized Slater determinant of the valence-band states in which every state
is occupied; since we can equally well write this as a Slater determinant of localized
(Wannier) functions, both Σxx and Σxy must remain zero. Now comes the tricky step:
we imagine turning ∆ε down to zero. We know that now the energy eigenstates certainly
form Landau levels, and that each LL will be formed of a superposition of the original
(B = 0) eigenstates corresponding to the appropriate range around En ≡ ±

√
n~ω0.

Thus, the LL’s with n < 0 will all be linear superpositions of the valence-band states.
On the other hand, the level with n = 0 is formed half from valence-band and half form
conduction-band states. The valence-band half, when combined with the contributions
of the n < 0 levels, forms just another representation of the filled valence band, which by
our earlier argument contributes nothing to Σxy (or Σxx); thus, when we start doping,
it is only the “conduction-band” half of the zero mode which contributes to Σxy, giving
the by now familiar 1/2 (e2/h) per spin/valley.4

It would be interesting to study how the behavior of Σxy evolves from the regime
∆ε� ~ω0 (where we get the standard “semiconductor” QHE result ne2/h) to the regime
∆ε � ~ω0 where the above argument suggests we get the anomalous (n + 1/2)e2/h
behavior; I suspect that the apparent “crossover” at ∆ε = ~ω0 (see Problem) may be
related to the calculated difference between the behavior of samples with “zigzag” and
“armchair” edges.

While there may be some open questions concerning the theory of the QHE in single-
layer graphene, on the experimental side the results are beautifully clear-cut. In their
original paper, Geim and co-workers measured the longitudinal resistivity and Hall con-

4This argument may actually be easier to grasp if we consider hole doping, i.e. empty the n = 0 level.
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ductivity in a perpendicular field of 14 T at 4 K, varying the gate voltage so as to vary
the carrier concentration between ±5 × 1012 cm−2. The longitudinal sheet resistance
(=resistivity) is symmetric around n = 0, with a zero value around the filling factors
ν = 4n + 2 and a sharp peak around ν = 0, with a value of about 12 kΩ (∼ 2h/e2)
(we will return to this in the next lecture). For the Hall conductance they found an
antisymmetric pattern with plateaux around the filling factors ν = 4n+2; around ν = 0
Σxy is linear in ν, with a zero value at ν = 0. Thus the data appear to be in very
good agreement with (the bulk of) the theoretical expectations; the only at first sight
surprising feature is that the plateaux are so wide, since the samples used were appar-
ently rather pure (µ ≈ 15000 cm2/V sec). It should be noted that no special care was
apparently taken with the edges of the sample, so that it is not clear whether these were
“zigzag”, “armchair” or mixed.

As the temperature is raised, the very precise QHE behavior seen at low temperatures
gets blurred; e.g. in the longitudinal resistance the zeroes are filled in and the peaks get
more rounded, leading to the (2D) Shubnikov-de Haas effect. In a typical 3D metal, this
and related (e.g. dHvA) effects require temperatures ∼ a few K; however, in graphene
the lowest SdH feature is still visible at room temperature.

We now turn to bilayer graphene. As we have seen, in the simplest model (with only
Ã � B hopping) the Hamiltonian for states close to a Dirac point has the form

Ĥ =
v2
F

γ1

(
0 (p̂x + ip̂y)2

(p̂x − ip̂y)2 0

)
(25)

What QHE behavior, if any, does one expect for such a Hamiltonian? Making the
standard replacement p̂ → p̂ − eA ≡ π̂ and introducing the dimensionless quantity Π̂
as previously, we find (where ω0 now ≡ vF/γ

1/2
1 )

Ĥ2 =
(~ω0)2

4

(
(Π̂2

x+Π̂2
y+1)2+2(Π̂x+Π̂y+1) 0

0 (Π̂2
x+Π̂2

y−1)2−2(Π̂x+Π̂y−1)

)
(26)

= (~ω0)2
(

(n+ 1)(n+ 2) 0
0 n(n− 1)

)
(27)

(n = 0, 1, 2 . . .) so that the Landau-level energies are given by (the upper eigenvalue in
eqn. (27) simply re-parametrizes the lower one)

En = ±~ω0

√
n(n− 1) (28)

The levels corresponding to n > 2 are nondegenerate, but the eigenvalue E = 0 is
doubly degenerate, corresponding to n = 0 and 1. Consequently, it condenses states
from twice the range addressed by the n > 2 states. Filling of a LL now occurs, for one
spin and valley, at ν = ±n (not including 0), and correspondingly after taking account
of the spin and valley degeneracy the Hall conductance takes quantized values 4ne2/h
around values of ν = n =integer6= 0. (By the same argument as for the single-layer
case, the contribution of the doubly-degenerate zero mode is only its positive half, so
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Figure 2: (Adapted from Novoselov et al., 2006.)

we correctly find that at ν = 1 exactly we recover Σxy = e2/h in agreement with the
classical expectation. This is exactly what is seen experimentally (see Novoselov et al.,
Nature Physics 2, 177 (2006)).

The above simple picture refers to experiments using fields below 20T. However, by
now experiments have been conducted on single-layer graphene up to 45 T, and some
interesting results are found:5 Above 20 T, while the usual prominent plateaux are found
at ν = 4(n+ 1/2)e2/h, extra (weaker) plateaux are found at ν = 0,±1 and ±4 (the one
at ν = +4 is barely visible in the data), in each case with Σxy = ν(e2/h). It is possible
to interpret these results within the framework of the above considerations about the
Landau levels if we allow for the possibility of spin and valley splitting, as follows:
Suppose the n = 1 level is spin-split by the Zeeman term (but not valley-split). Then,
starting from ν = 2 (the zero LL completely filled) we will first fill the spin-up n = 1
state, then there will be a gap before we start filling the spin-down n = 1 state (just as
in the standard IQHE at ν = 1). Since the spin-up n = 1 state contains 2 species (from
the two valleys), its complete filling corresponds to ν = 4.

So far, so good, but what about the plateaux at ν = 0 and ±1? (The ν = 0
plateau is particularly interesting, since in 45 T it can be seen, with Rxy → 0 but Rxx

peaking at ∼ 30 kΩ, even at room temperature, see the cited reference). The ν = ±1
plateaux can be explained as above if the spin degeneracy is lifted (one would then
expect ν = (2n + 1)(e2/h)). However, the ν = 0 plateau is more problematical; it
would apparently require in a noninteracting-electron picture, not just that the valley
degeneracy is also lifted (by itself this would lead to ν = (n + 1/2)(e2/h)) but rather
that the sublattice degeneracy be lifted by an amount comparable to ~ω0, (so that we
recover “semiconductor” picture, cf. above). This seems very difficult to understand
within a single-particle picture; consequently, the general belief is that the occurrence of
this state is evidence for interaction effects. We will return to this question in the next

5Zhang et al., PRL 96, 136806 (2006).
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lecture.
With this single exception, the QH effects we have discussed so far, while “anoma-

lous”, are analogous to the integral QHE in standard system, in the sense that they have
a natural explanation in terms of noninteracting electrons. What about the fractional
QHE? This was expected theoretically to occur in single-layer graphene, but for some
years proved elusive. Very recently (Oct. 14, 2009!) the group of E. Andrei at Rutgers
has reported evidence6 for a FQHE at ν = −1/3 (not −4/3!). They study suspended
sheet of single-layer graphene with a mobility (at ns ≈ 1010 cm−2)7 of 2.6×105 cm2/V sec,
with areal density in the range 109-1010 cm−2 and fields up to 12 T; temperature range
from ∼1-80 K. The measurements, unlike most of those on the QHE, are two-terminal,
which means that it is impossible in general to separate the effects of Rxx and Rxy; how-
ever, theory suggests that the plateaux which in the standard 4-terminal setup would
appear in Rxy should appear, in this geometry, in Rxx, and this expectation is confirmed
in that they see plateaux corresponding to the standard values ν = 4(n+ 1/2)(e2/h), as
well as (above 2 T) ν = −1 and ν = 3, which are presumably due as above to the lifting
of spin degeneracy.

Apart from some very intriguing observations in the neighborhood of ν = 0, which
will be discussed in the next lecture, the major result reported in this paper is the
observation of a plateau in the measured resistance at ν = −1/3; although it is less
pronounced than those at ν = 1 and, especially at the “standard” value ν = 2, it
seems definite. The interpretation as a genuine QHE plateau is strengthened by the
observation that as the temperature is raised it “dies” around 20K, which is within 8%
of the predicted gap against excitation of e∗/3 quasiparticle in a Laughlin-type ν = 1/3
state.

An even more recent experiment8, by the group of Philip Kim at Columbia, also
reported evidence for a FQHE in single-layer graphene. Like the Rutgers group, they
studied a suspended sample with two-terminal contact in fields up to 14 T, but worked at
somewhat higher areal densities (. 3×1011 cm−2). They find the standard ν = 4(n+1/2)
plateaux (also ν = 1), and also a distinct plateau at ν = 0.30± 0.02, which survives up
to T ∼ 10 K. In addition, they find features at ν = 0.46 ± 0.02 and ν = 0.68 ± 0.05;
they tentatively identify the latter as a ν = 2/3 QH state but are less confident about
the ν = 1/2 feature. Finally, like the Rutgers group, they obtain some interesting data
around ν = 0 which I will mention in the next lecture.

6X. Du et al. Nature online (Oct. 14 2009).
7Recall that in graphene the mobility is a strong function of ns (∝ n

−1/2
s ).

8K. Bolotin et al., Nature online (1 Nov. 2009).


