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Graphene III: Disorder, transport, interactions

The question of possible sources of disorder in graphene are rather different for the epitaxial
case and that of a freely suspended sheet. Since it seems likely that the purest (highest-
mobility) samples will be achievable in the latter case, so that it will increasingly be used
in experiments, I will concentrate on that. To remind you, these sheets are typically
suspended from a metallic “scaffold” and, at least to date, are of area ∼ (1 µ)2.

Is the suspended sheet likely to be ideally flat? One rather trivial consideration is that if
it is horizontal, gravity will distort it; however, a simple calculation shows that the resulting
vertical displacement of the center is of order gL2/c2 where L is the linear dimension and
c the speed of (longitudinal) sound (∼ 10 km/sec). For L ∼ 1 µ this is ∼ 10−19 m, so
completely negligible. A rather more tricky question is the effect of transverse thermal
fluctuations of the film: this is discussed in CN section III. The problem is that for an
infinite graphene sheet under zero tension the only restoring force for such vibrations is
the bending energy, which is proportional to

(
∇2h(r)

)2 (h(r) = height above equilibrium
plane at r).
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Thus the frequency is proportional to k2, with a co-
efficient that turns out to be ∼ 4×10−6 in SI units. For
a sheet of dimension ∼ 1 µ the lowest excitation energy
is therefore of order 1mK, so that at room tempera-
ture many such transverse vibrations are excited. This
does not in itself imply (contrary to what CN seem
to suggest) that the film is not effectively flat, but a
proper calculation of the rms transverse displacement
certainly indicates that it is indeed very large compared
to the lattice constant. Taking account of the tension
due to gravitational distortion (if any) does not appear
to remedy this problem, so prima facie one would expect the thermal fluctuations around
the planar configuration to be very large. It is, therefore, quite surprising that electron
diffraction experiments1 on freely suspended films, while indicating the presence of large
“crumpling” distortions, seem to indicate that those are static; there are in fact substantial
deviations (typically ∼ 5◦ of the surface normal from its “reference” value), which appear
to extend over distances of the order of 250 Å. Both the origin of these apparently static
distortions (which are considerable larger than would be given by thermal fluctuations)
and why the effect of thermal fluctuations seems to be invisible in the electron diffraction
experiments, is apparently at present not entirely clear.

Next, let us investigate the edges of the sample. As is well known from earlier work on
C nanotubes, the edge of a planar sheet of graphene can be of two types, depending on the
orientation of the edge relative to the honeycomb lattice.

Interestingly, it turns out from a solution of the TB Hamiltonian with the appropriate
1Meyer et al., Nature 446, 60–63 (2007).
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boundary conditions (CN section II.H) that zigzag edges can sustain electronic states lo-
calized near the boundary but armchair edges cannot. Of course, the question presumably
becomes more complicated for a “jagged” edge, say one oriented on average at an angle
of 45◦ in the plane of the above diagram; to the best of my knowledge one has no guar-
antee that such edges may not occur, at least in places, in realistic suspended samples of
graphene.

In addition to the boundaries, other inhomogeneities may in principle be introduced in
the bulk by various kinds of dislocations etc. in the bulk lattice; however, these should be
energetically costly and as far as I know there is no positive evidence for them in existing
experiments.

One important consequence of the existence of extra electron states at edges and pos-
sibly bulk dislocations is the possibility of “self-doping”: see CN section III.E for details.
While for a dislocation-free bulk sample the magnitude of this doping vanishes in the ther-
modynamic limits, they estimate that for a 1 µ sample it is of order 10−5 electrons per unit
cell, so roughly equivalent to a bias voltage of the order of 100 V (in the original epitax-
ial geometry of Novoselov et al.). Thus, in practice one often identifies the offset voltage
corresponding to zero doping empirically, e.g. from the minimum of the dc conductivity.

In addition to the above kinds of “mesoscopic” disorder, there may of course exist
sources of microscopic disorder, the most obvious being chemical substitutional impurities
(such as B or N). The effect of such impurities on the electron states is rather different from
that in a traditional textbook 3D solid. Let us for the moment consider a single isolated
impurity of charge Z. The potential generated by it has the standard Coulomb form (recall
that the electromagnetic field is always fully 3-dimensional!)

Vimp(r) = Ze2/4πεε0r (1)

where ε ∼= 1 for a freely suspended graphene sheet (the polarizability of the C cores is
very small), while for epitaxial graphene ε is (of order of) the dielectric constant of the
substrate, which can easily be ∼ 10 − 15. If the electron energy spectrum were parabolic
near the minimum as in an ordinary semiconductor such as Si or GaAs (or as in bilayer
graphene), then the Coulomb potential would of course produce the familiar hydrogenic
levels. However, the linear character of the spectrum near the Dirac points can change
things qualitatively. Imagine that we try to localize an electron within some distance r0

of a positively-charge impurity. We thereby gain a Coulomb energy −|Z|e2/4πεε0r0 but
we have to pay a price in kinetic energy. To estimate the latter we take the spread ∆k,
in wave vector k to be the minimum compatible with the uncertainty principle, namely
1/(2r0); then the KE is (of order) ~vF∆k ∼ ~vF/2r0. We see that if the dimensionless
effective coupling gZ defined by

gZ ≡
Ze2

4πεε0~vF
(2)
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exceeds 1/2, then it will always be energetically advantageous to decrease r0 without limit.2

Now, with vF
∼= 106 m/sec the quantity e2/4πε0~vF is about 2, so in suspended graphene

we need to take this instability seriously even for a singly-charged positive impurity. Of
course, the argument fails when r0 becomes comparable to the lattice constant a, since
then the corresponding values of k are large enough that the linear Dirac spectrum is no
longer correct, but it does indicate that we should expect some electronic bound states
that are localized in a spatial region of the order of the unit cell.

The above considerations assume that the impurity is unscreened. Actually, as we shall
see, the screening behavior of the electrons in graphene turn out to be rather different
from that in a textbook metal or semiconductor, but we can anticipate the result that the
screening length is of order n

−1/2
s , so for weak doping it is (as we might intuitively expect)

completely ineffective on the scale of a few lattice spacings.
Let’s now turn to the question of electronic transport in graphene. We start by dis-

cussing the semiclassical dynamics of electrons near a Dirac point. The form of the equation
of motion is identical to that in a standard textbook crystal:

~
dk
dt

= F = e(E + v ×B) + (coll) (3)

where “(coll)” indicates the effect of so far unspecified collisions with static impurities,
ripples of the surface, phonons or other electrons, and v ≡ (1/~)∂ε/∂k is the semiclassical
velocity. The electronic current carried by the electron is just ev. Now, in view of the
Dirac spectrum in zero magnetic field, namely,

ε(k) = ~vF|k| (4)

we have (n̂ ≡ k/|k|)
v = vFn̂ ≡ ~k/m∗(k) (5)

where the k-dependent “effective mass” m∗(k) is given by ~k/vF. In the absence of an
electric field eqns. (3) and (5) lead to circular motion around the Dirac point in k-space
with angular (“cyclotron”) frequency

ωc ≡ eB/m∗(k) (6)

(note that k ≡ |k| is constant along the orbit). In the context of a realistic cyclotron
resonance experiment we are normally interested in a situation where kBT � ~vFn

1/2
s , so

that the Fermi sea of electrons (or holes) is degenerate; in that case the relevant value of
2Although the argument given is somewhat “hand-waving”, the critical value 1/2 of gZ follows from a

more rigorous calculation. The result (2) is the analog of one well known in quantum electrodynamics,
where however the corresponding limit on the fine structure constant is very large compared to its physical
value.
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m∗ is m∗(k) for k = kF = π
√

ns. From now on, therefore, we shall drop the argument on
m∗, defining

m∗ ≡ m∗(k)k=kF
(7)

We see then that the cyclotron frequency depends on the areal coverage ns:

ωc =
eBvF

~kF
=

1
2
ν1/2ω0 (8)

where ν is the filling factor and ω0 ≡ (e~vFB)1/2 is the quantity defined in the context of
the QHE.3 Since the Landau levels are given by En = n1/2ω0, eqn. (8) ensures the correct
behavior in the correspondence limit.

Let’s now consider the conductivity in the absence of a magnetic field. For this purpose
we crudely model the effect of collisions by a phenomenological relaxation time τ :4

dk
dt

∣∣∣∣
coll

= −k/τ (9)

We then find that in a steady state k = −eEτ , so the current carried by a single
electron is e2Eτ/m∗ and the conductivity σ (sheet conductance) is

σ = nse
2τ/m∗ ≡ nseµ (10)

where we define the mobility µ ≡ eτ/m∗. Thus, if the scattering mechanism is independent
of carrier concentration, we find the anomalous ns-dependence

µ ∝ n−1/2
s , σ ∝ n1/2

s (11)

An alternative and suggestive form for σ, introducing the mean for path l ≡ vFτ , is

σ =
2e2

h
(kFl) (12)

Note that apart from the numerical factor this is identical in form to the expression for the
Drude conductivity of an ordinary 2D metallic film, and, as this suggests that interesting
effects might occur when l becomes . k−1

F .
Generally speaking, experimental measurements of the cyclotron frequency in mod-

erately pure graphene sheets confirm the prediction ωc ∝ n
−1/2
s . However, the electrical

conductivity does not always scale as n
1/2
s ; indeed, in the early measurements of the Manch-

ester group5 it is accurately linear in Vg, i.e. in |ns|, except at the very lowest dopings
3It should be noted that the subscript “F” has a rather different significance in kF and vF. In the

latter, it indicates ~−1∂ε(k)/∂k at the Fermi energy (i.e. close to the Dirac point), which is approximately
independent of the filling; in the former, it is related to the actual filling.

4This is of course really only appropriate to a Drude (classical) model, but just as in the case of a
textbook metal should work for a degenerate Fermi system provided τ is suitably chosen.

5Nature 438 197 (2005).
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where it reaches a nonzero minimum value ≈ 0.15 (kΩ)−1 (the significance of this num-
ber will be discussed below). What is at first sight equally surprising is that, at least in
epitaxial samples, σ appears to be approximately independent of temperature right up to
room temperature; since typically this is still � TF, neither kF nor m∗ can be changed
appreciably, so this must indicate a temperature-independent value of the collision time τ
(or mean free path l). Let’s first discuss this result.

1

2

0

The obvious source of temperature - de-
pendence of the mean free path is collisions
with phonons. Now the speed of the slowest
acoustic phonon (sound) mode in graphene is
about 8 km/sec; thus, the shortest-wavelength
phonon which is appreciably excited at room
temperature has k ∼ 0.14 µ−1, which is about
a factor of 100 smaller than the Fermi wave
vector of the carriers at a doping of 1012 cm−2,
and . 1/6 of kF even at 2×109 cm−2. Thus, we
are in the Bloch-Grüneisen regime, and we ex-
pect that the effective collision rate τ−1, which
enters the expression for the electrical conductivity to the “main” collision rate, which we
can estimate as of order 6 (vF/a)·(T/θD)2 (so that the corresponding mean free path is only
a few lattice constants) multiplied by a factor of order (k/kF)2, thus making it comparable
to the sample dimension. Of course, we should really put in the correct numerical factors
(which can be quite large!), but this argument makes it at least plausible that ordinary
phonons do not contribute much to the resistivity even at room temperature.

However, while this argument may be satisfactory for epitaxial graphene, it is incom-
plete for the case of a freely suspended sheet, since in that system we need to worry also
about the effect of thermally excited flexural phonons. If as above we take those phonons
to have a spectrum ω ∼ Ak2 with A ∼ 4×10−7 in SI units, then the k-value of the shortest-
wavelength flexural mode excited at room temperature is of the inverse lattice constant,7

so we are not at all in the Bloch-Grüneisen limit and at first sight one would expect these
phonons to contribute very substantially to the resistivity. Indeed, recent measurements8 of
the conductivity of suspended graphene sheets do show a strong temperature-dependence,
which the authors speculate is due to phonons. What is at first sight quite surprising is
the relatively weak strength of this effect: even at T ∼ 1 − 2K, the temperature of the
two recent FQHE experiments, the maximum k should be down only by a factor ∼ 10, yet
means free paths ∼ 0.3 µ see to be obtained! At the time of writing, this appears to be

6a = lattice constant, θD - Debye temperature. The factor (T/θD)2 is, to within a factor of order units,
the number of thermally excited phonons per lattice site in 2D.

7Of course by this point the assumptions used in deriving the dispersion relation have long broken down.
8Bolotin et al. PRL 101, 096802 (2009)
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something of a mystery.
Let’s return to the epitaxial case and consider the possible sources of the temperature-

independent scattering that seems to be observed. The most obvious sources are charged
chemical impurities in either the graphene itself or (more likely) the substrate. Naively, one
would think that such impurities would give rise to a scattering rate that is independent
of ns, and thus predict σ ∝ n

1/2
s as in eqn. (11). However, it is important (just as

in semiconductors) to take into account the screening of the impurity potential by the
electrons themselves. We will consider this in detail below, but anticipate the result that
the relevant screening length lTF is proportional to n

−1/2
s . Naively, one would expect that

in a 2D system the scattering “cross section” would be proportional to lTF , so that the
mean free path varies as l−1

TF, and thus to n
−1/2
s . If so, then we expect the conductivity σ

to be proportional to ns, as is often seen. Note that this argument implicitly assumes that
ns and the number of charged impurities in the substrate are independent variables, i.e.
that we are not in the “self-doping” regime.

We should not expect to find many charged impurities in a suspended graphene sheet,
and indeed the zero-B conductivity reported by the Rutgers group is proportional to n

1/2
s ,

which is consistent with a mean free path that is of the order of the sample dimensions.
In fact these samples appear to be in or close to the true “ballistic” limit, at least at
temperatures 1-2K.

K

One obvious question is: why is single-layer graphene
metallic at all, since the considerations of lectures 4–7 seem
to imply that metals in 2D should not exist, and those that
are experimentally found to do so (in Si MOSFETs, etc., see
lecture 14) are much less “2D” than a single sheet of C atoms?
There has been quite a bit of discussion in the theoretical lit-
erature of the question of weak localization in ideal (infinite)
graphene sheets, with some interesting conclusions: in par-
ticular, it turns out that if an electron is elastically scattered
only with a single “valley,” then the time-reversed paths that interfere to give (in the nor-
mal case) a weak-localization effect actually acquire an extra relative phase of π

(
see the

diagram: the solid (dotted) trajectory in k-space acquires an extra phase of π/2(−π/2)
)
,

so impurities actually give rise to an antilocalization effect (cf. the case of (3D) spin-orbit
scattering in the normal case). There is a little experimental evidence concerning such
effects in fairly dirty epitaxial samples, see CN section IV.H. However, if one asks the ques-
tion “why do current suspended samples violate the “theorem” of no metallicity in 2D”,
the answer is actually rather trivial: recall that the 2D localization length is of order of
magnitude

Lloc ∼ l exp kFl (13)

For all but the very lowest carrier densities, kFl � 1, so the RHS is much larger than the
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sample dimension!
This leads naturally to the question: What happens when ns and hence kF really

tend to zero, so that kFl need not be large compared to 1? Recall that the semiclassical
(Boltzmann) expression for the conductivity of a 2D metal can be written in the form

σ2D =
(

e2

h

)
(kFl) (14)

Mott’s original argument, applied (originally in 3D) in the context of dirty metals, was that
it is unphysical for the mean free path to be much less than k−1

F while the system remains
metallic, so there should be a “minimum metallic conductivity” that in 2D is of order e2/h.
It is usually believed9 that this result should be stable against the effects of interactions.
It is thus very significant that all measurements of the conductivity of graphene, whether
epitaxial or suspended, do seem to show that at the Dirac point (i.e. at zero doping) it
does seem to level off at a value that is precisely of order e2/h, although the numerical
constant differs somewhat from experiment to experiment. Of course, at the very lowest
dopings in ultrapure samples (l ∼ sample dimensions), the condition kFl ∼ 1 corresponds
to only a dozen or less electrons in the whole sample, so no doubt the theory (which is
usually done for the infinite case) may have to be revised, and in particular it would not
be surprising if the numerical constant in the prediction σ = const.(e2/h) were to depend
on the sample geometry.

So far, apart from taking into account the screening of a charged impurity, we have
totally neglected the effect of electron-electron interactions, and have got in most cases
relatively decent agreement between theory and experiment. This is actually quite puzzling:
as we have observed, the “graphene fine structure constant” αg, which is the analog of the
familiar fine structure constant α ≡ e2/4πε0~c of quantum electrodynamics, is given by
the expression

αg = e2/4πεε0~vF (15)

Since vF is about 1/300 of c, αg is of order 0.2 for epitaxial graphene (ε ∼ 10 − 12) and
for a freely suspended sheet is ∼ 2! So, prima facie, the electrons in graphene are by no
stretch of the imagination a weakly interacting system.

In the familiar case of the 3D electron gas, the minimal approximation that gives even
qualitative agreement with experiment is the random-phase approximation (RPA) of Bohm
and Pines. The principal effect of the RPA is that the charge density response function
χ(q, ω) is strongly normalized from the form χ0(q, ω) calculated for the free electron gas
(in 3D the Lindhardt function):

χ0(q, ω) → χRPA(q, ω) ≡ χ0(q, ω)
1 + Vqχ0(q, ω)

(16)

9The original argument (for a “standard” metal) was given by Fradkin, PRB 33, 3257 (1986).
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where Vq is the matrix element of the Coulomb interaction (∝ q−2 in 3D, q−1 in 2D).
For a 3D degenerate Fermi gas with the usual quadratic spectrum, this gives inter alia a
plasmon resonance at a frequency which is approximately q independent at small q, and
for realistic metallic parameters is usually appreciably larger than εF, thus the plasmon
is very well separated from particle-like excitations. In the 2D quadratic-spectrum case,
because of the fact that Vq ∝ q−1, the plasmon frequency is proportional to q1/2, but is
still well separated at small q from the particle-like continuum whose width scales as q.

The obvious question, therefore, is: what is the behavior of χ0(q, ω) in graphene, with
its peculiar “Dirac” spectrum ε(q) ∝ q for small q? Let us first consider the situation at
zero doping. We use the general formula (valid for any spectrum and in any number of
dimensions)

χ0(q, ω) =
∑
nm′

(εm′ − εm)|〈m|ρq|m′〉|2

(εm′ − εm)2 − ~2ω2
nm(1− nm′) (17)

where ρq is the Fourier transform of the electronic density operator. In the standard case of
a filled Fermi sea ρq is just

∑
k a+

k+q/2ak−q/2, so it simply constrains the (quasi)momentum
of the states m and m′ to differ by q. In graphene, however, the coordinate-space form of
ρ is a sum of contributions from the A and B sublattices: since the π band is completely
filled at zero doping, the state m must lie in this band and the state m′ in the π∗ band, and
their momenta must differ by q. But the states in the π and the π∗ bands are respectively
symmetric and antisymmetric with respect to the A � B interchange, so for q = 0 it
is clear that the matrix element is zero.10 For small nonzero q the matrix element is
proportional to q (actually q · δ1). Thus the expression on the RHS of eqn. (17) becomes

χ0(q, ω) =
∑
k

F (k,q)(q · δ1)2

F 2(k,q)− ~2ω2
(18)

where since n is in the π band and n′ in the π∗ band

F (k,q) ≡ ~vF {|k + q/2|+ |k− q/2|} (19)

Because of the two-dimensional integral (sum) over k the regions near the Dirac point do
not give a particularly significant contribution (to the real part). The expression (18) can
actually be evaluated analytically11 using the exact (general-k) expression for F (k,q), and
the result is

χ0(q, ω) =
q2

4~(v2
Fq2 − ω2)1/2

(20)

The important point to note in this expression is that χ0(q, ω) → 0 for q → 0 independently
of ω, and in particular in the limit ω → 0 where the imaginary part of (20), which is nonzero

10This is, of course, just a special case of a theorem well known in the context of (interband) optical
absorption in semiconductors.

11Shung, Phys. Rev. B 34, 979 (1986).
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for ω > vFq, vanishes). Thus the renormalization of the effective Coulomb potential Veff(q)
given by

Vq → Veff(q) ≡ Vq

1 + Vqχ0(q, ω)
(21)

is equivalent simply to multiplication of Vq = const.q−1 by a factor (1 + αg

4 )−1.
The situation is modified at finite doping ns. Indeed it is rather obvious that where q �

kF = (πns)1/2 the situation must be exactly12 equivalent to that in the usual (quadratic-
spectrum) 2D Fermi gas, since it is only the nature of the spectrum close to the Fermi
surface which now matters, and this is the same in the two cases. Thus we find the
standard 2D result

χ0(q, ω) =
dn

dε

vFq√
v2
F q2 − ω2

(22)

which for ω = 0 is just the constant dn/dε. Unlike the usual 2D case (where it is indepen-
dent of ns) for the Dirac case dn/dε is proportional to kF, i.e. to n

1/2
s . Thus the Coulomb

potential is nontrivially renormalized:

Veff(q) =
V (q)

1 + const.(kF/q)
→ const. as q → 0 (23)

The real-space screened Coulomb interaction is the Fourier transform of Veff(q); while it
does not fall off exponentially at large distances, it does cross over, at a range ∼ k−1

F , from
the unscreened r−1 form to r−2, thereby giving rise to a finite cross-section proportional to
k−1

F , i.e. to n
−1/2
s . Thus the result we anticipated earlier for scattering by screened charged

impurities is justified.
Finally, let’s briefly return to the behavior of the transport coefficients in a high mag-

netic field (nowadays one can apply fields up to ∼ 45 T). Of course, the original question
of interest was the existence and location of integral and fractional quantum Hall plateaux.
However, the two recent experiments that reported evidence for a FQHE at ν = 1/3 also
reported some very interesting behavior around ν = 0 (similar behavior had been previ-
ously observed in dirty epitaxial samples). Both groups observed that at T ∼ 1 − 2 K,
B > 5 T, the state close to ν = 0 was insulating, with R� > 1 GΩ. They also observed
that as the temperature was raised the resistivity shows an activated behavior

R� ∼ exp(T0/T )α (24)

However, the values of α and T0 obtained by the two groups are rather different: the
Columbia group finds α ≈ 1 (i.e. standard “Arrhenius” activation) with T0 ∼ 120 K at
14 T and rapidly decreasing with decreasing B, while the Rutgers group finds a “best”

12That is, the situation as regards intraband (π∗ → π∗) transitions. Of course we still get the original
interband (π → π∗) contribution, which is only slightly modified.
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value of α close to 1/2 (reminiscent of Mott variable-range hopping) and T0 ∝ B2. These
results are very new and not at all well understood; it seems unlikely in particular that
they can be understood on any noninteracting-electron picture.


