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Topological quantum computation: the general idea1

A very intriguing idea which has emerged over the last 10 years or so at the interface
of traditional condensed matter physics and the younger field of quantum information
is that one might be able to use the special properties of certain kinds of condensed
matter systems, in particular the highly entangled nature of their groundstates, to carry
out the operations necessary for quantum computation in a way which is topologically
protected. Since the systems necessary for this program of topological quantum compu-
tation (hereafter TQC) are both intrinsically many-body and (at least in the most widely
considered examples) intrinsically two-dimensional, this topic forms a natural capstone
to this course. It should be emphasized right away that the idea of TQC is even more
speculative than that of quantum computing in general, and as of now the experimental
progress towards it has been minimal; nevertheless, the mere consideration of it throws
up many intriguing challenges to our basic understanding of highly entangled condensed
matter systems.

Let’s start by briefly reviewing the requirements for a quantum computer in general.2

In principle, what we need to construct a universal quantum computer, i.e. a quantum
computer which is able to execute an arbitrary algorithm, is a set of quantum-mechanical
systems confined to a two-dimensional Hilbert space (“qubits”) and the ability to reliably
perform on this collection of qubits a specific set of operations: initialization, readout
and, most crucially, a set of unitary operations (“quantum gates”) which must include
arbitrary one-qubit gates (that is, unitary operations which change the state of a single
qubit while leaving all the rest unchanged) and at least one two-qubit (entangling) gate.
In the useful language of the “Bloch sphere”, in which an arbitrary pure state of a single
qubit can be specified by the direction of a unit “spin” σ, we need to be able to perform
arbitrary rotations of the different σi (where i labels the different qubits) and also at
least one entangling two-qubit operation, e.g. the CNOT gate which in terms of the
Pauli matrices σν (ν = x, y, z) corresponds to the unitary operation

ÛCNOT =
1
2

{
(1̂ + σ̂z)11̂2 + (1̂− σ̂z)1σ̂x2

}
(1)

It is important to appreciate that even if we can reliably perform all these operations, it
is necessary for our quantum computer to work that the state of the N -qubit system be
reliably preserved (or evolve in an exactly known way) in the periods between the gate
operations. The problem of designing a system which has this property, irrespective of
whether or not we can perform all the gates necessary for universal quantum computing,
is referred to as the problem of designing a “quantum memory”. Thus, quantum memory

1Some useful general references, in increasing order of “technicality”: G. Collins, Sci. Am. 294, 56
(2006); S. Das Sarma et al., Physics Today 59, 32 (July 2006); J. Preskill, Lecture notes for Physics 219,
Quantum Computation, http://www.theory.caltech.edu/˜preskill/ph219; A. Stern, Ann. Phys. (NY)
323, 204 (2008); C. Nayak et al., Rev. Mod. Phys. 80, 1083 (2008).

2I will consider here only the standard paradigm (“circuit model”) of quantum computing, as e.g. in
the text of Nielsen and Chuang. In the context of TQC variant schemes such as “one-way” (cluster) and
adiabatic quantum computing do not raise significantly different issues.
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plus the set of one and two-particle3 gates specified above is both a necessary and a
sufficient condition for universal quantum computing; for a more restrictive set of tasks
quantum memory plus a subset of the above gates may be adequate.

Of the many difficulties which impede the construction of a quantum computer in
practice, two are particularly relevant in the context of TQC. First, it is often difficult
to be sure that one has effected exactly the desired quantum gate. For example, if one’s
qubits are literal nuclear spins and one wishes, starting with the state σz = +1, to effect,
say, a rotation through an angle θ around the x-axis, then an obvious way to do so is
to impose an rf field in resonance with the dc field (assumed along ẑ); however, any
error in either the length, the strength or the frequency of the pulse will lead to a final
state different from the desired one, and in a quantum computer such errors, even if
individually small, rapidly build up to the point where they may destroy the working of
the computer.

The second major difficulty is decoherence: even in the “resting” periods between
gates the effect of any unwanted and unplanned interaction of the qubits with the rest
of the Universe (the “environment”) will tend to destroy the delicate phase relations
between the different branches of the superposition which are essential to the functioning
of the quantum computer, or in other words it will destroy the “quantum memory”. It
is worth reminding ourselves that decoherence4 can arise either from interaction with a
part of the environment which is describable classically but only specified statistically
(e.g., in the case of real nuclear spins, with the ambient 50 Hz background) or with a
part which must itself be treated quantum-mechanically. In the first case the system
remains, for any given realization of the classical field, in a pure state, but since we do
not know which realization occurred and can only specify the probability of occurrence
in a statistical way, the density matrix which we must use becomes a classical mixture:
e.g. for a single qubit in a fluctuating magnetic field along the z-axis, the pure state DM

ρ̂pure =
(
|a|2 a∗b
ab∗ |b|2

)
(2)

is converted, through the interaction with our classical but statistically specified envi-
ronment, into the mixture described by

ρ̂mixt =
(
|a|2 0
0 |b|2

)
(3)

In the second case (interaction with a quantum environment) the system and the envi-
ronment become entangled. If χ denotes the state of the environment, then schematically,
for an interaction diagonal in σ̂z

(a| ↑〉+ b| ↓〉)|χ0〉 → a| ↑〉|χ↑〉+ b| ↓〉|χ↓〉 (4)

3But any completely entangling two-particle gate can substitute for CNOT.
4It s sometimes argued that the former case is not “real” decoherence. This seems to me a matter o

linguistics, since the resulting density matrix is just mixed as in the second case.
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where χ↑, χ↓ are states of the environment which are in general different, and which for
simplicity of illustration we will assume are in fact orthogonal. Since by hypothesis we
cannot (or do not wish to) measure the state of the environment, we must trace over it,
and thereby recover the transformation from ρ̂pure (eqn. 2)) to ρ̂mixt (eqn. (3)) just as
in the case of a classical environment.

The above examples refer to a special case, where the coupling to the environment is
only through the z-component of “spin” σ̂z. If the coupling also involves the transverse
component of spin σ̂x and/or σ̂y, then in addition to randomizing the relative phase of the
amplitudes a and b and thereby effecting the transition from (2) to (3) (“phase flipping”)
it may also cause a change in the relative magnitudes of a and b, thus giving rise to a
change in the expectation value 〈σ̂z〉 (“bit flipping”). In the literature it is common to
describe the effects of decoherence phenomenologically by the Bloch equations of NMR
theory:

d〈σz〉
dt

= −〈σz〉 − 〈σ〉eq
T1

(5)

d〈σ⊥〉
dt

= −〈σ⊥〉
T2

(6)

Here 〈σz〉eq is the equilibrium value of 〈σz〉 under the relevant conditions, σ⊥ ≡ (σx, σy)
is the transverse component of spin, and T1 and T2 are phenomenological relaxation
times. Under rather general conditions one can write (since any field in the xy-plane
tends to change one component of 〈σ⊥〉 as well as 〈σz〉)

1
T2

=
1

2T1
+

1
Tφ

(7)

where Tφ is a “pure dephasing” time (corresponding to a fluctuating field along the z-
axis). Thus, T2 can never be longer than 2T1 and may be orders of magnitude shorter, as
is the case in many physical systems which have been proposed as candidates for qubits.
To build an ideal quantum memory (hence a fortiori and ideal quantum computer) one
needs either that both T1 and T2 tend to infinity, or to be able to detect and correct
the effects of decoherence when it occurs. The second option leads to the large topic of
quantum error correction; in the present context we focus on the first option.

O
0r

Why might topological considerations be relevant to the elimi-
nation of decoherence? And why may many-body system be par-
ticularly useful in this context? To answer the first question, let’s
briefly consider the concept of “encirclement” of one physical object
by another. As previously pointed out in the context of (abelian) anyons, this concept
can only be unambiguously defined if the objects in question are restricted to move in a
2D physical (not Hilbert!) space. Under these conditions one can meaningfully ask the
following question: Suppose an object states at r0 at time zero, and some later time is
again found at r0. In the intervening period, how many times did it encircle the point O
(which may or may not be the position of a second physical object) and in what sense
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(clockwise or anticlockwise)? Suppose further that when O does represent the position
of a second physical object (which may, but need not be, of identical type to the first)
then the effect of (say) a clockwise encirclement is not just to multiply the wave function
ψ0 by a phase factor exp 2πiα (α 6= 0, nπ) as in the case of abelian analysis of lecture 18,
but to rotate it to a different state ψ1, and suppose furthermore that there is no way of
telling ψ0 and ψ1 apart, by “local” interactions (i.e. those which only address the present
position of the particle, not how it got there). Then it seems that ψ0 and ψ1 could form
the basis of an ideal quantum memory; since no interaction with the environment can
either tell them apart or mix them, the Hamiltonian of the system-environment interac-
tion must be proportional to the unit matrix in the relevant 2D Hilbert space, so that a
state of the form

ψ = α|ψ0〉+ β|ψ1〉 (8)

may be maintained indefinitely with 100% fidelity.
This scenario actually has a second advantage: the conversion from ψ0 to ψ1 was

effected physically by the operation of “encirclement”, and the latter is extremely robust;
provided that the path we trace does not actually pass through O (something which is
often excluded physically by the existence of, say, a large repulsive interaction) the the
precise path followed does not matter; either 1 encircled 0 or 1 did not, and it doesn’t
matter how smooth or jagged the path was! Thus topological considerations may be
able to guarantee not only total freedom from decoherence (an ideal quantum memory)
but also the fidelity of quantum gate operations.

To get an idea why many-body system may be particularly relevant, let’s return
briefly to the question of the metastability of supercurrents in superfluid 4He, which was
discussed in lecture 9. To a very crude approximation, one can think of the groundstate
of superfluid 4He in a toroidal geometry as a Bose condensate of atoms all in an s-state,
while a metastable supercurrent in the same geometry corresponds to a Bose condensate
of atoms all in a p-state. The p-state of a single atom can be distinguished from the
s-state by its winding number

n ≡ 1
2π

∮
∇φ · dl (9)

where φ is the phase of the Schrödinger wave function. Is n a “topological invariant”?
For a single atom in the annular geometry, just as for an electron in an atom,5 the
answer is no; indeed, it is very easy to show that the ansatz

ψ = a(t)ψp + b(t)ψs (10)

with a(t) decreasing monotonically from 1 at t = −∞ to 0 at t = +∞, interpolates
smoothly between the n = 1 and n = 0 states, and moreover, crucially, that on this
trajectory the energy always decreases monotonically. For superfluid 4He the situation
is qualitatively different, since even with the simple “Gross-Pitaevskii” ansatz that all

5In the semiclassical approximation, in which the electromagnetic field is described classically and
the electron can thus be described by a pure QM state. When the EM field has to be treated quantum-
mechanically the situation is more complicated because of the atom-field entanglement.
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atoms remain always in a common state the Fock term in the energy provides a large
free energy barrier along the state described by eqn. (10). Thus for superfluid 4He in an
annular geometry the winding number is indeed a topological invariant.

Could one envisage the n = 0 and n = 1 states of superfluid 4He as constituting
a possible qubit? Alas, no: while the topological invariance of the winding number
guarantees us that in the “obvious” basis where σz = +1(−1) corresponds to n = 1(0),
the quantity T1 is astronomically long, the quantity T2 may be very short, since the
“environment” (in this case principally the walls of the physical cell) can rather easily
“tell the difference” between the s- and p-condensates. This suggests that we need to
somehow combine the advantage of many-body physics and a strictly 2D physical space.

The systems actually envisaged for TQC are typically 2D many-body systems with
groundstates that are usually degenerate and low-lying excitations which are nonabelian
anyons, that is, crudely speaking, anyons such that encirclement operations lead not just
to a phase facto (what happens for abelian anyons) but to an actual nontrivial rotation
of the state vector in the relevant Hilbert space, so that successive encirclements, e.g. of
2 by 1 and 3 by 2, do not commute. Before going into the relevant theory in detail,
let’s first try to get some physical feeling for the meaning of abelian and nonabelian
“statistics” and how they come to be realized.

To understand the way in which abelian fractional statistics may come about in a
many-body system, it may be helpful to consider an analogous problem involving only
two particles, which in turn can be understand by looking at two effects which can be
illustrated in simple one-particle example. The first effect, which we have already met, is
“fractional charge” (or probability): to illustrate this notion we consider a single charged
particle restricted to tunnel between the groundstate of two neighboring potential wells.
Suppose we make a “projective measurement” of the charge QR to the right of the line
z = 0 at some definite time t; then of course we will always find QR = 1 or 0. However,
suppose we allow the system to relax to its groundstate, namely

ψ0 = cos θ|R〉+ sin θ|L〉, tan θ ≡ ε/∆ (11)

If we then perform a series of “weak” measurements over time so as to establish the
average value of QR, then we will find a nonintegral result, 〈QR〉 = cos2 θ (which is of
course what we would calculate). This does not seem particularly mysterious.

The second effect we need has to do with
Berry’s phase. Suppose that a QM system, say
for definiteness a single particle, is subject to
some classical control parameter λ (in general
of the nature of a vector or something simi-
lar), so that its energy eigenfunctions, and in
particular the GSWF, is a function of λ:

Ψ0 = Ψ0(r, λ) (12)

Suppose now that the parameter λ is varied slowly in time (i.e. over timescales long
compared to ~/Emin where Emin is minimal excitation energy). If after some time T λ
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returns to its original value, then by our previous argument we must have

Ψfin(r, λ) = exp iαΨin(r, λ) (13)

Part of the phase increment α is a “dynamical” phase
(
~−1

∫ T
0 E(λ(t)) dt

)
which depends

on the actual time-dependence of λ(t) (and on the arbitrary zero of energy). However,
in general there may be a second contribution to α which is independent of the detailed
dependence of λ(t) and is a function only of the path followed (recall in the “interesting”
case λ is of the nature of a vector or something similar). This is the celebrated Berry
phase.

It is easy to obtain a formal expression for the Berry phase φB in terms of the variation
of the groundstate6 under a small adiabatic change δλ of the control parameter λ. For
such a change we evidently have (since Ψ0 is normalized)

δ(argΨ0) = Im 〈Ψ0|δΨ0〉 = Im 〈Ψ0|∂Ψ0/∂λ〉δλ (14)

and hence
φB = Im

∮
dλ 〈Ψ0|∂Ψ0/∂λ〉 (15)

Note that it is irrelevant to the argument whether the expression on the RHS of (14)
has a real part (although the corresponding contribution to (15) must vanish).

A very standard example of a nontrivial Berry phase is that of a spin-1/2 in magnetic
field which is oriented in direction specified by θ, φ such that θ is constant in time but
φ is rotated adiabatically (i.e. over a timescale � (µB)−1 from 0 to 2π (see figure). For
given θ, φ the groundstate satisfies

n · σ̂|ψ〉 = |ψ〉 (16)

so if we require that the two component of the spinor
wave function be single-valued as a function of φ,
then the (almost) unique solution is, up to an overall
complex but φ-independent constant,

|Ψ〉 =
(

cos θ/2
sin θ/2 exp iφ

)
(17)

If we plug this form of wave function into formula
(15) we find

φB =
∫ 2π

0
dφ sin2 θ/2 = π(1− cos θ) (18)

where the RHS is the solid angle subtended by the
“orbit” of the field; note that putting θ = π/2 (i.e. rotating B through 360◦) gives the

6Or any other energy eigenstate.
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standard factor of −1 in the state of a spin-1/2 particle. (Note that had we made the
other possible “single-valued” choice, namely

|Ψ〉 =
(

cos θ/2 exp−iφ
sin θ/2

)
(19)

we would have got φB = −π(1 + cos θ), which is equivalent to (18) modulo 2π).
Now let us put together the results of the two considerations above. As an example,

imagine a quantum particle with a coordinate ra which can be localized either at point 0
or at point R (or be in a quantum superposition of those two states). Further, imagine
a second particle (with coordinate rb) which is constrained by energy considerations to
be in a p-state relative to a, i.e. the relative wave function must have the form (up to
irrelevant dependence on |rb−ra|) exp iφ, where φ ≡ arg (rb−ra). Then the most general
wave function of the two-particle system will be of the form

Ψ(ra, rb) = aΨ0 exp iφ0(rb) + bΨR exp iφR(rb) (20)

where φ0 ≡ arg rb, φR ≡ arg (rb −R). This wave function is of course perfectly single-
valued with respect to rb. Now suppose we “pin” rb, e.g. with a stray external potential,
and move it adiabatically around 0 as shown in the figure. (“Adiabatically” in this
example means “on a timescale long compared to the inverse of the matrix element for
the transition of ra from 0 to R). What is the resultant phase change (Berry phase)
φB? We may parametrize the dashed path in the figure by λ ≡ φ0; then we have

∂Ψ
∂λ

= i

{
aΨ0 exp iφ0 + bΨR

∂φR

∂φ0
exp iφR

}
(21)

Since Ψ0 and ΨR are each assumed orthogonal and normalized, this means

Im 〈Ψ|∂Ψ/∂φ0〉 = |a|2 + |b|2∂φR/∂φ0 (22)

and the Berry phase φB is given by

φB = 2π|a|2 + |b|2
∫ 2π

0
(∂φR/∂φ0) dφ0 (23)

However, since the path does not encircle R, it is clear that the integral in (23), which
is simply the total change in φR due to the encirclement of 0, is zero. Hence

φB = 2π|a|2 6= 2π (24)
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or in words, since the mean charge enclosed by the path has the fractional value |a|2,

statistical phase = 2π × (fractional) average charge enclosed by path (25)

Thus, it is natural that the phase acquired by one Laughlin quasiparticle encircling
another is 2πν, and since this is two exchange processes, the exchange phase is πν.

Rather than presenting the most general possible scheme for TQC,7 it may be more
useful in the present context to consider a specific implementation, base on a particular
type of nonabelian excitations, the so-called Ising anyons (the name comes from the way
those anyons appear in conformal field theory). As we shall see, the most promising (at
present) physical implementations of TQC involve this type of excitation. Ising anyons
have the following properties:

1. They can be created only in pairs (just as the abelian anyons of the Laughlin state
can be created only in triples).

2. The Hilbert space spanned by 2n anyons has dimension 2n (not, as one might
naively think, 22n)

3. A qubit corresponds to a pair of anyons, but the allocation of anyon pairs between
qubits is in some sense arbitrary. Thus 2n anyons give n qubits, which is consistent
with the idea that the Hilbert space is 2n-dimensional.

4. By various “encirclement” (“braiding”) operations which involve carrying one
anyon around another in the 2D physical space, it is possible to carry out the
following operations (quantum gates) on the qubits:

exp(iπσ̂z/4) (effects e.g. 1√
2

(
1
1

)
→ 1√

2

(
1
i

)
up to an overall phase)

exp(iπσ̂x/4) 1√
2

(
1 −i
−i 1

)
exp iπ

2 (σ̂z1 · σ̂z2) 2-particle entangling gate

(26)

and, needless to say, arbitrary product of such operations.

5. Apart from the anyons and the vacuum, which we shall denote by the symbol 1,
there exist other excitations in the system and for a reason which will subsequently
become apparent we will call them “fermions” - which, like the anyons, can actually
be created (and absorbed) only in pairs.

6. The rules for production and recombination of the anyons and fermions (“fusion
rules”) are as follows:

7See e.g. Preskill, ref. cit.



PHYS598PTD A.J.Leggett Lecture 24 Topological quantum computation 9

(a) Two fermions can recombine only to vacuum

(b) A single anyon cannot recombine with a single fermion

(c) Most importantly, two anyons can recombine in either of two ways: to the
vacuum or to a single fermion

If we denote as above the vacuum by 1, a single fermion by ψ and a single anyon by
σ (the notation is conventional in the field) we see that the rules (a)–(c) can be written
formally as (cf. Stone and Chung, Phys. Rev. B 73, 014505 (2006)):

ψ × ψ = 1 (27a)

ψ × σ = σ (27b)

σ × σ = 1 + ψ (27c)

The structure of a general nonabelian anyon theory can be regarded as defined by the
combination of fusion rules exampled by (27) and the “braiding rules” which tell us how
encirclement of one anyon by another executes various quantum gates.

It will be obvious from examination of point (4) above that while the operations which
can be conducted in a topologically protected way using Ising anyons include a single
2-particle entangling gate as required, the set of (potential) single particle operations is
very restricted, consisting of rotations of (multiples of) π/4 around the three orthogonal
axes. (The set of such operations is sometimes called the “Clifford group” in the physics
literature, although mathematicians appear to use this phrase in a much more general
sense). Unfortunately, it is not possible to generate an arbitrary rotation on the Bloch
sphere by using only these operations (“the Clifford group is not dense in SU(2)”), and
thus Ising anyons as such do not permit completely topologically protected universal
quantum computation; however, they do allow some more restricted quantum algorithms
to be implemented in a completely topologically protected way, for example the Grover
algorithm for N = 4 which turns out to require only the operations of the Clifford group
plus a single 2-qubit entangling gate. If one wishes to guarantee that all possible single-
qubit gates be topologically protected, one has to go to a different kind of anyons. The
simplest alternative type is Fibonacci8 anyons, which has a single type of anyonic object,
denoted ε, and the single fusion rule

ε× ε = 1 + ε (28)

Just as for Ising anyons, Fibonacci anyons permit the implementation of an entangling
2-qubit gate; however, in this case the permitted single-qubit operations are rotations
of π/5 rather than π/4, around two orthogonal axes; this set of operations is “dense
in SU(2)”, i.e. by iterating it sufficiently we can generate an arbitrary rotation on the
Bloch sphere. We shall see in lecture 26 that there is a possibility that a particular

8The name comes for the fact that the Hilbert space of n anyons has the dimension Fib(n), where
Fib(j) is the j-th number of the Fibonacci series (1,2,3,5,8,13 . . . ).
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quantum Hall state (at ν = 12/5) may be described by a groundstate wave function
whose excitations included Fibonacci anyons.

To conclude this lecture, it is interesting to sketch the connection between the exis-
tence of anyons in a given physical system and the existence of degenerate and mutually
inaccessible groundstates. For this purpose we consider a system which sustains abelian
anyons, namely the QH state at ν = 1/3. Evidently, in a simply connected geome-
try such as a disk the Laughlin ground state is nondegenerate. However, consider a
Corbino-disk geometry, bend it round into a torus and impose (of course unphysically)
the condition that the magnetic field be everywhere perpendicular to the surface and
furthermore such that the filling factor ν (≡ number of electrons / flux quantum) is ex-
actly 1/3. Then there is a remarkable theorem due to Wen and Niu:9 the groundstate
of such a system must inevitably be 3-fold degenerate, with the 3 states “mutually inac-
cessible” (this concept is defined below). It is very remarkable that the first part of the
theorem does not require any specific knowledge of the groundstate wave function; the
second part (regarding the mutual inaccessibility) does require the the excitations have
a nonzero energy gap, but not that that the groundstate necessarily has the Laughlin
form (it would presumably apply, for example, to an unpolarized state with ν = 1/6 per
each spin, or to a Wigner crystal).

The proof of the theorem rests on the observation that in order to define the magnetic
vector potential on a torus self-consistently, the area of the surface must correspond to
an integral number of flux quanta. So imagine the torus “unfolded” to make a flat
rectangular plate with sides L1, L2 and the magnetic field B normal to its plane; to
mimic the toroidal setup we must then impose periodic boundary conditions both on
the magnetic vector potential A (modulo a nonsingular gauge transformation) and on
the electronic wave function ψ. The number of flux quanta is

Ns = L1L2/2πl2M (29)

where as usual lM ≡ (~/eB)1/2 is the magnetic length. Let the number of electrons be
Ne, and such that

Ne

Ns
≡ ν = 1/3 (30)

For the moment let us neglect any potential energy, so that the Hamiltonian is just
the KE term:

Ĥ =
1
2

{(
− i~

∂

∂x
+ eAx

)2 +
(
− i~

∂

∂y
+ eAy

)2
}
≡ K̂ (31)

Consider the pair of operators (usually called “magnetic translation operators”) defined
by

t̂(a) ≡ exp ik̂ · a/~ (32a)

t̂(b) ≡ exp ik̂ · b/~ (32b)
9Phys. Rev. B 41, 9377 (1990). Actually they prove a more general result, that for the QHE with

ν = p/q (p, q mutually prime) on a surface of genus m, the degeneracy is qm.
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where a, b are vectors directed along orthogonal sides of the plate and the operators k̂x,
k̂y are defined by

k̂x ≡ −i~ ∂

∂x
+ eAx + eBy (33a)

k̂y ≡ −i~ ∂

∂y
+ eAy − eBx (33b)

(note the relative signs in the A and B terms, which are crucial!) It is easy to verify that
t̂(a) and t̂(b) commute with K̂ (eqn. (31)) and moreover commute with the boundary
conditions (in the sense that if ψ satisfies those then so do t̂(a)ψ and t̂(b)ψ, at least up
to a nonsingular gauge transformation). However, t̂(a) and t̂(b) do not commute with
one another! In fact, a simple calculations shows that

t̂(a)t̂(b) = t̂(b)t̂(a) exp−i(a× b)/l2M (34)

Consider now the many-body problem defined by the Hamiltonian

Ĥ =
∑

i

K̂i +
1
2

∑
ij

V̂ (ri − rj) (35)

(where we have still for the moment set the single-particle potential V (ri) equal to zero).
Define the operator

T̂ (a) ≡
Ne∏
i=1

t̂i(a) (36)

i.e. we perform a magnetic translation of all the Ne electrons through a. It is clear that
T̂ (a) commutes with V̂ as well as with K̂. Consider the special choices

T̂1 ≡ T̂ (L1x̂/Ns), T̂2 ≡ T̂ (L2ŷ/Ns) (37)

where x̂ and ŷ are unit vectors along the two orthogonal sides of the plate. It is essential
to note that the arguments of T̂1 and T̂2 are very small :

|L1x̂/Ns| = L1/(L1L2l
−2
M ) = l2M/L2 � lM, etc. (38)

Now comes the crunch: We have the relations

[T̂1, Ĥ] = [T̂2, Ĥ] = 0 (39)

(and T̂1, T̂2 leave the boundary condition invariant), but

T̂1T̂2 = T̂2T̂1 exp−2πi/3 (40)

In view of (39), we may choose (a particular) groundstate ψ0 to be an eigenstate of (e.g.)
T̂2. Since T̂2 is unitary, this means we must have

T̂2ψ0 = (exp iλ)ψ0 (41)
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But then, applying (40) to (41), we find that T̂1ψ0 is also an eigenstate of T̂2, with a
different eigenvalue exp i(λ+2π/3), and T̂ 2

1ψ0 similarly with eigenvalue exp i(λ+4π/3).
However, T̂ 3

1ψ0 has the same eigenvalue of T̂2 as ψ0 and therefore is (or at least may
be) the same state. Thus, at least T̂1ψ0 and T̂ 2

1ψ0 must be different states10 from ψ0

(and from one another). On the other hand, in view of eqn. (39) they are eigenstates
of Ĥ0 with the same eigenvalue as ψ0! Hence the groundstate must be (at least) 3-fold
degenerate.

The argument is not yet complete, because we have still to take into account the
effect of the single-particle potential Û ≡

∑
i Û(ri). Indeed, the quantities t̂(a) and t̂(b)

do not in general commute with Û , so the argument as given above fails. Nevertheless,
Wen and Niu show that in view of the smallness of the arguments of T̂1 and T̂2 relative
to the characteristic scale of variation of the potential (which in real life is presumably
at most of the order of the atomic size), the matrix elements of Û in the groundstate
manifold are simply proportional to the unit matrix plus a term of the order of exp−L/ξ
where ξ is some microscopic length. I give here a “poor man’s version” of their argument:

Since the operators T̂ 3
1 and T̂ 3

2 commute, we may take (any one of) the ground-
state(s) to be a simultaneous eigenstate of these two, with eigenvalue exp 2πi in each
case (cf. above). Since T̂0(a) can be written as exp iQ · a where Q ≡

∑
i ki is the total

“magnetic pseudomomentum” this strongly suggests (though it does not prove) that the
state is strongly oscillating along the x-axis as a function of the COM coordinate R,
with a wavelength of the order of the sub-microscopic length losc ∼ L1/Ns ∼ l2M/L2.
The effect of going from ψ0 to T̂1ψ0 is then likely to be qualitatively similar to shifting
the COM through losc. Thus, we may estimate the off-diagonal elements of Û in the
groundstate manifold as proportional to the Fourier transform U(Q) with respect to the
COM coordinate R, with Q ∼ L2/l

2
M, that is

Ûo−d ≡ 〈T̂1ψ0|Û |ψ0〉 ∼∫
ψ0(R) exp iQ ·RU(R, . . .)ψ0(R) dR ∼

∫
U(R) exp iQ ·R dR

(42)

(since ψ0(R) is appropriately normalized). But barring pathology,11 the minimum dis-
tance over which U(R) changes appreciably (i.e. by a factor ∼ 1 relative to its “typical”
value) is ∼ the length lU over which the single-particle potential U(r) changes, which
in turn is at least of the order of the atomic size. Using standard results on the Fourier
transforms of slowly varying functions we thus conclude that

Ûo−d . O(exp−lUL2/l
2
M) ∼ exp−L2/ξ (43)

where the length ξ ≡ l2M/lU , though possibly a couple of orders of magnitude larger than
lM, is still “microscopic”, so that Û0−d vanishes exponentially with the sample size. A

10Note that were they same states up to a phase factor they would necessarily have the same eigenvalue
of T̂2.

11It needs to be investigated whether formation of a crystal lattice counts as “pathology”.
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similar argument shows that the difference between the diagonal elements is of the same
order of magnitude, so within the groundstate manifold

Ûo−d = U01̂ +O(e−L/ξ), QED (44)

What does the triply degenerate groundstate have to do with the fractional (1/3)
statistics of the anyons of the ν = 1/3 FQHE state? I think the answer is that while in
a simply connected geometry the effect of “encircling” one anyon with another simply
introduces a phase factor, in a toroidal geometry it may, depending on whether the
“encirclement” involves topologically nontrivial motion around the torus, bring us back
to a different many-body state. Then if one starts from a particular groundstate, say
ψ0, creates 3 anyons, performs some topologically nontrivial encirclement operation and
then annihilates the anyons, one may return to a different groundstate. (This question
has almost certainly been discussed for the FQHE somewhere in the literature. . . )

In the next lecture we will see that we can in fact make same precise statements about
the relationship between groundstate degeneracy and anyonic statistics in the case of a
specific exactly soluble model, the Kitaev “toric code”.


