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The ν = 5/2 fractional quantum Hall effect

As we have seen, the vast majority of quantum Hall plateaux observed experimentally,
whether in Si MOSFET’s, GaAlAs-GaAs heterostructures or graphene, occur either
at integral values of the filling factor ν ≡ Ne/Nφ (Ne ≡ number of electrons, Nφ ≡
number of flux quanta) (IQHE) or at rational fractions ν = p/q with q an odd integer
(FQHE). Within the composite-fermion picture, the FQHE is explained by setting p = k,
q = 2nk ± 1 and viewing the FQHE as derived from the IQHE with ν = k by attaching
to each electron 2n imaginary “flux quanta”; or, what is equivalent, multiplying the
IQHE wave function by (zi − zj)2n. However, as we have seen in lecture 20, in the
case of ν = 1/2 the same procedure yields the conclusion that the “parent” IQHE state
should correspond to ν = ∞, i.e. it should be a Fermi liquid. Moreover, we saw that
experiments, in particular on magnetic focusing, seem consistent with this point of view.

Prima facie, one would expect the states which occur at ν = n + 1/2 in traditional
QHE systems such as GaAlAs-GaAs heterostructures1 to differ from that at ν = 1/2 only
by having n Landau levels completely filled; the situation in the (n+1)-th LL should be
similar to that in the LLL for ν = 1/2. Is was therefore a considerable surprise when it
was discovered in 1987 that a QH plateau occurs, with all the standard characteristics,
at ν = 5/2. This plateau seems to be quite robust, with a gap ∆ ∼ 500 mK; at
temperatures � ∆ the longitudinal resistance vanishes within experimental accuracy,
and the Hall conductance appears to be quantized at (5/2) e2/h to high accuracy, thereby
excluding the possibility that the plateau is a case of the standard FQHE with ν = 32/13
or 33/13. To date, the only other even-denominator plateau which has been reliably seen
is at ν = 7/2, which might naturally be viewed as similar to that at ν = 5/2 with the the
n = 2, ↑ spin LL filled. ν = 19/8 gives a deep dip in Rxx, and a barely visible plateau.
(In 1-st LL, not only ν = 1/2 but also ν = 1/4, 3/4 give apparently Fermi-liquid-like
states).

Some other properties of the ν = 5/2 state:

1. Robustness: both plateau in RH and the zero of Rxx extend over
a range ∼ 0.1 in ν. (in the highest-mobility samples)2

2. Excitation gap ∆: this is measured by fitting Rxx to Rxx ∼
const. exp−∆/T . ∆ appears to be a strong (∼ exponential) func-
tion of disorder: the highest measured value to date ∼ 0.45 K, and
extrapolation to zero disorder (µ →∞) gives ∆ ∼ 0.6 K (∼ 0.006Vc)
(Vc = e2/4πεε0lM) (Note: Vc is the natural unit to measure qp gap,
as ∆qp ≡ 0 for the FQHE if Vc is neglected).
3. Magnetic field dependence:3 If B⊥ (hence ν) is held constant, and B‖ is varied, ∆qp

1As we saw in lecture 22, a QH plateau would occur at ν = n + 1/2 in (single-layer) graphene if
both the spin and valley degeneracies were split, but this has to do with the special nature of the Dirac
spectrum and is best regarded as a variant of the IQHE.

2See fig. 1 of Xia et al., PRL 93, 176809 (2004).
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decreases linearly with B‖, extrapolating to 0 at B‖ = 1.5−2.5 T. In the same geometry,
ν = 7/2 FQHE shows similar behavior, but for ν = 7/3 (“Laughlin” state) ∆qp increases
with B‖.
4. At least to date, the only system in which the ν = 5/2 QH plateau has been seen

is GaAs heterostructures: here typical parameters are ns ∼ 1 − 3 × 1011 cm−2 (so B ∼
2− 6 T), µ ∼ 3× 107 cm2/V sec, T ∼ 5− 100 mK.

In trying to understand what is going on at ν = 5/2 it seems very natural to make
the default assumption that the LLL is filled both for ↑ and ↓ spin states; then prima
facie the behavior in the n = 1, ↑ spin LL should be identical to that in the n = 0, ↑ spin
LL for ν = 1/2. However, this need not necessarily be the case, because in view of the
different behavior of the wave functions for n = 0 and n = 1 the relevant matrix elements
of the Coulomb interaction could be appreciably different in the two LL’s (note by the
way that no FQHE has (to date) ever been seen for ν > 4, i.e. presumably, in the third
LL). An immediate question which arises then is: given that the LLL is completely filled
for both spins, i.e. unpolarized, is the n = 1 LL spin-polarized or not? As we shall see
below, the answer to this question is crucial to the identification of the nature of the wave
function and thus to the possibility of using the ν = 5/2 FQHE for TQC; unfortunately,
it has not so far proved possible to determine the answer experimentally. Originally,
it was found that the plateau is suppressed by a substantial magnetic field component
parallel to the plane, and the most obvious explanation is that the relevant state is a spin
singlet (hence energetically disadvantaged by the Zeeman field). However, subsequent
experiments, combined with numerical theory, tend to suggest that the effect is actually
of orbital origin; because the parallel component of the magnetic field affects the motion
perpendicular to the plane, it can change the relevant Coulomb matrix elements. This
raises the very obvious question: Does a corresponding QH effect occur in graphene?
Assuming that at high fields the spin degeneracy is split but the valley degeneracy
remains unsplit, the value of ν corresponding to the 5/2 in the standard systems, i.e. the
value at which the second LL with spin ↑ is half filled, would be ν = (±)3. There is in
fact evidence for a ν = 3 FQHE in very recent experiments,4 but it has not been so far
investigated in detail and could be due to valley splitting. For the moment, let us assume
that the ν = 5/2 state seen in GaAs heterostructures is in fact fully spin polarized and
ask what is its nature? In particular, why does a QH system at ν = 5/2 not behave, as
it seems to at ν = 1/2, as a “disguised” Fermi liquid (of composite fermions)?

A relevant question is: What do we know about the possible instabilities of a Fermi
liquid? There are of course a great many, but most of them, such as crystallization,
tend to occur either not at all or at temperatures comparable to the Fermi temperature,
which for GaAs heterostructures at n = 1011 cm−2 is ∼ 30 K. The obvious instability
which occurs for arbitrary weak interactions of the right sign and thus at arbitrary
low temperatures is Cooper pairing, which of course in a system of real particles leads
to superconductivity (if charged) or superfluidity (if neutral). This consideration led

3Dean et al., PRL 101 186806 (2008).
4The experiments of the Columbia and Rutgers groups cited in lecture 22.
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Moore and Read5 to conjecture that

the ν = 5/2 QH plateau corresponds to a Cooper-paired state of composite fermions.

If this is true, then it is generally believed that the elementary excitations will be non-
abelian (Ising) anyons, which is what makes this possibility so interesting in the context
of TQC.

Let’s try to make this hypothesis a bit more quantitative. According to the composite-
fermion hypothesis, the correct groundstate for a given value of ν = k/(2nk±1) is given
by taking the non-Gaussian part of the wave function of electrons at ν = k, multiplying
by (zi − zj)2n (“adding 2n flux quanta to each electron”) and readjusting the Gaussian
part so that the magnetic length lM which comes in refers to the actual magnetic field B
(not B∗). Now, consider the case ν = 1/2. This corresponds to the choice k →∞, n = 1;
since in this limit B∗ = 0, the wave function of a set of noninteracting electrons is just the
filled Fermi sea for given value of ns and complete spin polarization |FS〉. Consequently,
according to the above prescription we should have apart from normalization

Ψ(normal)
ν=1/2 =

∏
ij

(zi − zj)2 exp−
∑

i

|zi|2/4l2M |FS〉 (1)

where the |FS〉 component guarantees the correct antisymmetry under the exchange
i ↔ j. The assumption which seems to be implicit in much of the theoretical literature
is that a similar expression, multiplied by the appropriate Slater determinants for the
completely filled (spin singlet) LLL wave function, would be adequate also for the ν = 5/2
state were it not for the effect of interactions. In the following I will not write out the
part of the wave function which refers to the LLL explicitly.

So, if eqn. (1) is the correct representation of a normal Fermi sea of composite
fermions, what is the corresponding representation for a BCS-paired state? The obvious
answer is

Ψ(paired)
ν=1/2 =

∏
ij

(zi − zj)2 exp−
∑

i

|zi|2/4l2M |BCS〉 (2)

where |BCS〉 is the Cooper-paired state of weakly interacting fermions at the relevant
density. Now, on our assumption that the ν = 5/2 state (as well as the ν = 1/2 state)
is completely spin-polarized, the Fermi antisymmetry requires that the pairing takes
place in a state of odd relative orbital angular momentum l, and the default option
is l = 1 (p-state). Moreover, the state must be two-dimensional.6 This still does not
specify the state uniquely; for example, the order parameter could be of the form Akx

(or Aky), which breaks rotational invariance but not time-reversal invariance. However,
our general experience with BCS pairing suggests that in a rotationally invariant system
it is usually energetically advantageous to make the energy gap (which is proportional

5Nuc. Phys. 360, 362 (1991).
6Of course, as we have seen in lecture 9, no true superfluid ODLRO can survive in 2D. However, we

may assume, at least for the moment, that we are below the KT transition, so that the lack of ODLRO
does not affect the qualitative behavior.
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to the modulus of the order parameter) as uniform as possible over the Fermi surface.
This suggests that we should choose for the OP

∆(k) = ∆0(kx ± iky) (3)

so that even though the magnetic field B∗ acting on the composite fermions is zero,
their state still breaks time reversal invariance. In the literature a state of the form (3)
is referred to as a “p + ip” state: note that the “energy gap” is independent of k and
equal to ∆0.

The crucial question, now, is: What is the explicit form of the groundstate wave
function |BCS〉 which corresponds to the choice (3)? Actually, as we shall see in the
next lecture, the answer does not seem to be unique in the thermodynamic limit (a
fact which has not been widely appreciated in the QH literature). However, there is a
particular answer which has been widely given in the literature on superfluid 3He and
other (non-FQH) condensed matter systems, namely that the wave function is of the
standard BCS form, with the coefficients uk and vk having the right angular dependence
for a p + ip state. This is, explicitly,

|BCS〉 = |BCS〉standard ≡
∏
k

(uk + vka†ka†−k)|0〉 (4)

where |0〉 is the physical vacuum, the spin suffix ↑ is omitted for simplicity, and the
coefficients uk and vk are given by

uk =
1√
2
(1+εk/Ek), vk =

1√
2
(1− εk/Ek) exp iφk

Ek ≡
√

(εk − µ)2 + ∆2
0

(5)

with µ the chemical potential. It is easily verified that the expectation value of the total
orbital angular momentum L in the state described by |BCS〉standard is N~/2.

Should we simply insert |BCS〉standard in the conjecture (2) for the groundstate of
the ν = 5/2 QH system? There is a problem here, since we do not know a priori the
value of the effective Coulomb matrix elements for the composite-fermion states and
hence cannot calculate the gap magnitude ∆0. However, since the order of magnitude
of the Coulomb energy (e2/4πεε0r0, where r0 ∼ n

−1/2
s ) is quite comparable to the Fermi

energy and may in fact be larger, it seems reasonable to suppose that ∆0 is of order
εF and thus that the pair radius ξ of the pairs in the state |BCS〉standard is of order
of the interparticle spacing (or the magnetic length, which for ν ∼ 1 is essentially the
same thing). But there is little reason to believe that the composite-fermion idea works
quantitatively on this kind of scale. Consequently, it may seem sensible to insert in (2)
not the full real-space wave function derived from (4), but only the form which the latter
takes at long distances (|ri − rj | � k−1

F , ξ). As we shall see in the next lecture, this has
the form of the “Pfaffian”

Pf
(

1
zi − zj

)
≡ 1

z1 − z2

1
z3 − z4

1
z5 − z6

. . .− 1
z1 − z3

1
z2 − z4

1
z5 − z6

. . . + . . .− . . . (6)
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i.e. it is the completely antisymmetrized version of the expression
∏N

i=1
j=i+1

(
1

zi−zj

)
.

Thus, finally, the ansatz of Moore and Read for the ν = 5/2 QH state is up to
normalization (presumably omitting the filled LLL)

ΨMR{zi} =
∏
i<j

(zi − zj)2 Pf
1

(zi − zj)
exp−

∑
i

|zi|2/4l2M (7)

and it is on this conjectured form that most of the work on the possible implementation
of TQC in this system has been based. Note that apart from the Pfaffian factor, ΨMR

is just the Laughlin factor for ν = 1/2; however, the Pfaffian factor is of course essential
to give the correct antisymmetry.

Although the ansatz (7) is an informal guess, it can be made plausible by two con-
siderations:

1. It is the exact groundstate of the artificial Hamiltonian

Ĥ = +V0

∑
ijk

δ(2)(ri − rj)δ(2)(rj − rk)
(
δ(2)(r) ≡ δ(x)δ(y)

)
(8)

2. Numerical studies show that it has a substantial overlap with the exact groundstate
of some rather more realistic model Hamiltonians.

It is sometimes said in the literature that the MR state (7) is the exact analog of the
superfluid A1 state of liquid 3He. This is not strictly true, since as well as the paired up-
spin component 3He-A1, also has an unpaired down-spin component. It would be true
for (hypothetical) totally spin-polarized 3He-A1, with no down-spin component. Note
by the way that while the ν = 1/2 state would appear to be symmetric with respect to
particles and holes, the Hamiltonian (8) breaks the particle-hole symmetry, and since
the MR state is an exact eigenfunction of it, it must do the same.

Let’s briefly review some other possible identifications of the ν = 5/2 QH state.7

1. The (331) state

Like the MR state, this is a triplet-paired state of the composite fermions; however,
unlike that state (which corresponds to S = 1, Sz = 1) this one corresponds to
S = 1, Sz = 0 and hence has no net spin polarization in any direction. The explicit
form of this state in terms of the electron coordinates is

Ψ =
∑

{σi}:
P

i σi=0

∏
i<j

σi=σj

(zi − zj)3
∏
i<j

σi 6=σj

(zi − zj)1 exp−
∑

i

|zi|2/4l2M (9)

In words: the correlation of any two parallel-spin electrons vanishes as r3, but
correlation of any two anti-parallel spin electrons vanishes only as r.

7The most readable account of this subject I know is T-L. Ho, PRL 75, 1186 (1995).
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The 331 state is the exact analog of the A phase of liquid 3He (which has no net
Cooper pair polarization).

In terms of the original electron coordinates, ΨMR and Ψ331 look totally different,
and in particular appear to have a different topology. But when expressed in terms
of the composite fermions (see Ho, ref. cit.), it turns out that the only difference
is in the spin wave function χµν !

χMR =
(

1 0
0 0

)
χ331 =

(
0 1
1 0

)
(10)

Ho exploits this fact to show that Ψ331 can be deformed continuously into ΨMR

without changing “total” g(r12) ≡ 〈ρ(r1)ρ(r2)〉, hence without changing Vc. (Cf.:
non-metastability of circulating state of spin-1/2 BEC in annulus).

2. The “anti-Pfaffian” state.8

If one could neglect completely LL mixing, particle-hole conjugation is an exact
symmetry for a half-filled LL. But ΨMR breaks this symmetry, since it is the exact
GS of a Hamiltonian which is not particle-hole symmetric. So there must exist
an “anti-Pfaffian” state (ΨAP) which is the particle-hole conjugate of ΨMR. For
exact particle-hole symmetry it must be degenerate with ΨMR, but LL mixing could
stabilize either ΨAP (or ΨMR). To the best of my knowledge, no-one has formulated
the AP wavefunction explicitly in terms of composite fermion coordinates, so one
cannot immediately compare it with the MR or 331 states. However, studies of
the edge states using bosonization predict different values for the (“universal”)
thermal conductance, etc. (see below).

3. Other possible identifications.

In the literature there have been yet other suggestions for the nature of the ν = 5/2
QH state: the “K = 8” state, the “U(1)× SU(2)” state and others. I will not go
into the details here

Let’s now turn to the important but rather confusing issue of the charge and statistics
of the MR states and its competitors. I will try to give a plausible argument only for
the MR state, and just quote the results for the others.

For a first pass, let us look at the elementary excitations of a (p + ip) 2D Fermi
superfluid. These are (mostly, cf. lecture 27) of two types: simple fermionic BCS quasi-
particles, with a minimum excitation energy equal to the gap ∆0, and vortex-antivortex
pairs, whose characteristic energy is strongly temperature-dependent as discussed in lec-
ture 10. Now for a strictly 2D system with ∆ ∼ εF, the fraction of excited quasiparticles
at TKT is fairly small (Problem), so let us focus on the vortex-antivortex pairs. Suppose
we want to create a vortex at the origin. In a BCS superfluid the way to do this is
to simply to multiply the wave function by a factor of the form

∏N
i=1 f(|zi|) exp(iφi/2),

8Levin et al., PRL 99, 236806 (2007): Lee et al., ibid. 236807.
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where φi ≡ arg zi and f(|zi|) is some function which tends to zero as |zi| → 0. The
factor of 1/2 in the phase corresponds to the well-known fact that in a neutral super-
fluid such as 3He the vorticity is quantized in units of h/mp rather than h/m, where
mp ≡ 2m is the mass of a Cooper pair. The simplest form of f(|zi|) which preserves the
analyticity of the wave function up to a cut is f(|zi|) = |zi|; thus, a vortex at the origin
might be created simply by multiplying the groundstate wave function by

∏N
i=1 z

1/2
i , and

correspondingly a vortex at the position specified by the complex variable x + iy ≡ η0

would then be created by application of
∏N

i=1(zi − η0)1/2. Arguing along these lines, we
would conclude that a plausible ansatz for a single quasiparticle (actually quasihole) in
a system whose GS is described by the MR wave function is

Ψqh =
N∏

i=1

(zi − η0)1/2ΨMR{zi} (11)

Whether (11) is correct or not9 may be a matter of theology, since it actually turns
out that it is impossible to create a single isolated vortex in a (p + ip) Fermi superfluid;
for essentially topological reasons one must have either an even number of vortices, or an
edge state which plays the same role as a vortex. So the physically meaningful question
in the case of the ν = 5/2 QH state is, what is the correct form of the wave function
for two quasiholes? The generally accepted ansatz, which preserves all the required
symmetries, is

Ψ2 qh = Ψ(L)
N Pf

{
(zi − η1)(zj − η2) + (zi − η2)(zj − η1)

zi − zj

}
(12)

where Ψ(L)
N is the “Laughlin” wave function for ν = 1/2, i.e. up to normalization

Ψ(L)
N ≡

∏
ij

(zi − zj)2 exp−
∑

i

|zi|2/4l2M (13)

Note that this state cannot in general be expressed in the form f(zi, zj)×ΨGS. Consider
now a 4-qh state (i.e. 2 qh pairs).10 Start with N = 2, then a possible wave function.
is

Ψ4 qh = Ψ(L)(z1 − z2)−1 × {(z1 − η1)(z1 − η2)(z2 − η3)(z2 − η4) + (z1 ↔ z2)} ≡ (12)(34)
(14)

But at first sight there are two other possibilities, namely (13)(24) and (14)(23). How-
ever, we now note the identity

(12)(34)− (13)(24) = (z1 − z2)2(η1 − η4)(η2 − η3) (15)

from which it follows that

(12)(34)(η1−η2)(η3−η4)+(13)(24)(η1−η3)(η2−η4)+(14)(23)(η1−η4)(η2−η3) = 0 (16)
9In the literature is is usually stated that the single quasihole creation operator is

QN
i=1(zi − η0) as

for Laughlin states, but it is not clear that this statement has any real meaning.
10Nayak and Wilczek, Nuc. Phys. B 479, 529 (1996).
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i.e. only 2 linearly independent functions. This result also holds for the generalization
for N > 2:

Ψ4 qh = Ψ(L)
N Pf

{
(13)(24)
z1 − z2

− (13)(24)
z3 − z4

. . .

}
(17)

and it can be generalized to the case of 2n quasiholes :

for 2n quasiholes, 2n−1 linearly independent states

NW exhibit an explicit form of a possible choice of basis states:

Ψ(0)
4 qh =

(η13η24)1/4

(1 +
√

1− x)1/2

(
Ψ(13)(24) +

√
1− xΨ(14)(23)

)
Ψ(1/2)

4 qh =
(η13η24)1/4

(1−
√

1− x)1/2

(
Ψ(13)(24) −

√
1− xΨ(14)(23)

)
(?) x ≡ η12η34

η13η24
η12 ≡ η1 − η2, etc.

(18)

Let’s take |x| � 1 i.e.

1

2

3

4

so that

Ψ(0)
4 qh = 2−1/2(η13η24)1/4

(
Ψ(13)(24) + Ψ(14)(23)

)
Ψ(1/2)

4 qh = 2−1/2(η13η24)1/4
(
Ψ(13)(24) −Ψ(14)(23)

) (19)

Then it is clear that interchange of 1 and 3 (or 2 and 4) affects only the prefactor, so gives
a phase factor exp iπ/4. It would thus be natural to take the charge e∗ of a quasihole to
be e/4.

However, interchange of (e.g.) 2 and 3 gives a nontrivial rotation11 in the space of
Ψ(0)

0 and Ψ(1/2). Thus, the states Ψ(0)
4 qh and Ψ(1/2)

4 qh can in principle be used as the basis
for a qubit. More generally,

2n anyons → n qubits

We now turn to the question: How do we tell experimentally whether the observed
ν = 5/2 QH state is indeed the MR state (as numerical studies tend to suggest) or is
one of the competing states ((311), antiPfaffian etc.)? It turns out that all the suggested
identifications predict12 that the effective charge e∗ is e/4, but they predict different
values for the “Coulomb exponent” g which controls some of the proper ties associated
with edge states, e.g. temperature-dependence of tunnelling characteristics.

11Confirmed by numerical calculations: Tserkovnyak and Simon, PRL 90, 016802 (2003).
12I suspect this follows from rather general topological considerations, see below.
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Ansatz e∗ g abelian/nonabelian

MR e/4 0.25 nonabelian

AP e/4 0.5 nonabelian

331 e/4 0.375 abelian (?)

K = 8 e/4 0.125 abelian (?)

Recent experiments designed to identify the nature of the ν = 5/2 FQHE
state

1. Dolev et al., (Weizmann Institute) Nature 452, 829 (2008). Sample: GaAs-AlGaAs
heterostructure.

(controls tunneling)

n ∼ 3× 1011 cm−2

µ ∼ 3× 107 cm2/V sec

T ∼ 10 mK
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Impinging current, Iimp(nA)

Measure: shot noise associated with tunnelling across QPC
(quantum point contact). Theoretical prediction:

SI = 2e∗V ∆giti(1−ti)
[
coth

(
e∗V

2kBT

)
− 2kBT

e∗V

]
+4kBTg (20)

Note that: (a) for kBT � e∗V , the [ ] goes to 0 so no in-
formation on e∗, (b) for kBT � e∗V , SI = 2e∗V ∆giti(1− ti),
where ∆gi = (νi − νi−1)e2/h with ti ≡ tunneling over edge
between i and i− 1 ⇒ must know ∆gi, ti (which may depend
on Iimp).

Typical data: (note theoretical curves need knowledge of
gi, ti - taken from ν = 3 measurements (?)).

Conclusion: e∗ = e/4 with small/zero e/2 contamination,
no conclusion about g.

2. Radu et al. (Harvard-MIT-Lucent), Science 320, 899
(May 2008). Sample: GaAs-AlGaAs heterostructure.

n ∼ 2− 6× 1011 cm−2

µ ∼ 2× 107 cm2/V sec

T ∼ 13− 60 mK
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(everywhere)

800 nm

QPC
/

d

Measure: VD (i.e. RD) and Vxy (i.e. Rxy) at fixed Idc and Vg, infer the tunneling
conductance of the QPC by gT = (RD−Rxy)/R2

xy. Plot RD (∝ gT +const) as a function
of Idc.

Typical data are shown on the graph above. Fit data to (weak-tunneling) expression

gT = AT 2g−2F (g, e∗V/kBT ) V ≡ IdcRxy (21)

where F is a known function. Four fitting parameters: A, R∞, e∗, g. Best fit: e∗ = 0.17,
g = 0.35 i.e. AP or U(1) × SU2(2) ( e∗ = 0.25, g = 0.5). Data barely consistent with
(331) state (g = 0.375), probably inconsistent with MR (g = 0.25).

3. Willett et al., (Lucent), PNAS 106, 8853 (2 June 09). Sample: GaAs-AlGaAs
heterostructure.
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effective area A of the dot as a function of Vg. Note effect of Vg is not primarily through
charge accumulation on dot, but directly through change of area ⇒ change of enclosed
flux. Hence, should be a unique relation between period observed in B and Vg.

Conclusion: at low T , main component is e∗ = e/4, but with an appreciable e/2
component. At higher T , e/2 dominates.

Note: A very recent preprint which may be highly relevant to the interpretation of
some or all of these experiments is Ofek et al., arXiv:0911.0794.

What can we say generically about ν = 5/2?

A. On torus, by generic Wen-Niu argument, groundstate
must be at least doubly degenerate.

B. Hall effect in “wide” Corbino-disk geometry: By original
Laughlin argument, 2φ0 of flux must correspond to e of charge.
So minimum “accessible” periodicity of F in Φ is 2φ0: e.g.
could have the situation as on the figure with single electron
making “adiabatic” transition.

But: 1/2 = 2/4! So, equally plausible scenario is shown on
the bottom of the page, with 2 electrons making “adiabatic”
transition. This would almost certainly gives “noise” corre-
sponding to e/4 in “constricted” Corbino-disk geometry.

So, e∗ = e/4 merely indicates “pairing” and nothing more
specific?

[If time permits I will briefly discuss also the ν = 12/5 state, one candidate state which
has anyon excitations of the Fibonacci rather than Ising type.]


