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p + ip Fermi superfluids

As mentioned in lecture 25, a leading candidate for (Ising) topological quantum computa-
tion is a degenerage 2D Fermi system that forms Cooper pairs in the so-called p+ ip state.
In this case the anyons are constituted by vortices; these vortices may or may not carry
“Majorana fermions,” which as we shall see are essentially the two halves of a “split” Dirac
fermion, so that a single Dirac fermion is shared by two vortices; a qubit is essentially
formed by a pair of vortices, so that the Hilbert space corresponding to a 2n vortices is
2n-dimensional. The vortices are believed to be the analogs of the fractionally charged
quasiparticles of the Moore-Read state, which possibly describes the ν = 5/2 QHE, and
it is believed that by braiding them appropriately one can implement nonabelian (Ising)
statistics. Candidate systems for a 2D p+ ip Fermi superfluid include p-wave-paired Fermi
alkali gases, with either one or more than one hyperfine species (a system yet to be realized
experimentally) and, among existing systems, the superfluid A phase of liquid 3He con-
fined to a thin slab and, most importantly, strontium ruthenate (Sr2RuO4)1; both these
systems contain 2 spin species, which to a first approximation may be regarded as forming
Cooper pairs independently (though see below). For simplicity I start by considering the
so far unrealized single species (“spinless”) case, and return later to the generalization of
the argument to the more realistic 2-species case. I will first give the “orthodox” account2,
and subsequently raise some questions about it.

The orthodox account

The generic “particle-conserving” BCS ansatz for N spinless fermions (N even) is

ΨN =

(∑
k

cka
†
ka

†
−k

)N/2

|vac〉, where ck = −c−k (from antisymmetry) (1)

In the literature, it is more common to use the PNC (particle non-conserving) form:

ΨBCS =
∏
k

(uk + vka
†
ka

†
−k)|vac〉, uk = u−k, vk = −v−k (2)

with
uk ≡

1
(1 + |ck|2)1/2

, vk ≡
ck

(1 + |ck|2)1/2
(3)

so that |uk|2 + |vk|2 ≡ 1, ck = vk/uk.
1Not to be confused with Sr3Ru2O7, which is a very interesting system in its own right but does not

form Cooper pairs.
2The seminal papers are Read and Green, Phys. Rev. B 61, 10267 (2000) and D. A. Ivanov, PRL86,

268 (2001).
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Two important quantities in BCS theory are

〈nk〉 = |vk|2, Fk ≡ 〈a−kak〉BCS = u∗kvk =
ck

1 + |ck|2
(4)

The Fourier transform of Fk, F (r) (≡ 〈ψ̂(0)ψ̂(r)〉BCS) plays the role of the wave function
of the Cooper pairs.

In standard BCS (“mean-field”) theory, one minimizes the sum of the kinetic energy
〈T 〉 =

∑
k(εk − µ)〈nk〉 and the “pairing” part of the potential energy

〈Vpair〉 =
∑
kk′

Vkk′〈a†ka
†
−ka−k′ak′〉

(
Vkk′ ≡ 〈k, −k|V |k′, −k′〉

)
(5)

Then the pair wavefunction Fk satisfies the Schrödinger-like equation:

2EkFk = −
∑
k′

Vkk′Fk′ (6)

with
Ek ≡

|εk − µ|
(1− 4|Fk|2)1/2

≡ Ek[Fk] (7)

which is a disguised form of the BCS gap equation:

∆k = −
∑

k′ Vkk′∆k′/2Ek′

Ek =
√

(εk − µ)2 + |∆k|2
(8)

Note that the gap equation refers to the Cooper pairs (condensate). However, in the
spatially uniform case Ek ≡

√
(εk − µ)2 + |∆k|2 also represents the energy of excitation of

single quasiparticle of momentum k: in the PNC formalism

Ψ0 =
∏
k>0

(
uk|00〉k + vk|11〉k

)
≡
∏
k>0

Φ(0)
k (9)

Ψ(k0) =
∏

k6=k0

Φ(0)
k · |01〉k0 (or . . . |10〉k0) (10)

where |01〉k means the state with k empty and −k occupied, etc.

In 2D, a possible p-wave solution of gap equation is

Fk = (kx + iky)f(|k|)
(
≡ (px + ipy)f(|p|), hence “p+ ip”

)
(11)
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then also ∆k = (kx + iky)g(|k|), Ek = h(|k|) (k̂−indep.) 6= 0, ∀k.
It is important to note that the energetics is determined principally by the form of Fk

close to Fermi energy (|εk − µ| . ∆0 ←≡ |∆k|k=kF
). But for TQC applications, we may

need to know Fk very far from the Fermi surface (k → 0 and/or k → ∞). Note that in
most real-life cases,

∆0 � µ (“BCS limit”) (12)

Some properties of the (p+ ip) state:

(a) Angular momentum:

Recall: ΨN =
(∑

k cka
†
ka

†
−k

)N/2
|vac〉 ≡ Ω̂N/2|vac〉

with ck = vk/uk ≡ u∗kvk/|uk|2 = Fk/(1− 〈nk〉) ∝ exp iϕk

Since L̂z = −i~∂/∂ϕ,
[
L̂z, Ω̂

]
= ~ and so (since L̂z|vac〉 ≡ 0)

L̂zΨN =
N~
2

ΨN (13)

leading to a macroscopic discontinuity at point ∆0 → 0. More seriously, 〈Lz〉 ∼
N~
2

(
1−O(Tc/εF)

)
as T → Tc from below!

(b) Real-space MBWF in long-distance limit:
In 1st-quantized, real-space representation,

ΨN ≡ ΨN{zi} = Pf [f(zi − zj)] (14)

where zi ≡ xi + iyi and f(z) is the FT of ck.
At long distances |zi− zj |, f(zi− zj) should be determined by the k → 0 behavior of
ck:

ck = Fk/|uk|2 = (∆k/2Ek)/
(
1− |εk−µ|

Ek

)(
Ek ≡

√
(εk − µ)2 + |∆k|2

) (15)

For a (p + ip) state, ∆k ∝ (kx + iky)g(|k|), so unless g(0) = 0, we find as k → 0:

∆k → const.(kx + iky),
(
1− |εk−µ|

Ek

)
→ const.|∆k|2, so ck → const./(kx − iky) so the

FT F (zi − zj) behaves at large distances as (zi − zj)−1; this then implies

ΨN ∼ Pf
{

1
zi − zj

}
(16)

Note: depends on behavior of ∆k (etc.) very form from F.S.
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Bogoliubov-de Gennes (BdG) equations

In the simple spatially uniform case, a simple relation exists between the “completely
paired” state of 2N particles and the (2N+1)-particle states (“quasiparticle excitations”)–
the BCS wavefunction is product of states (k,−k), the excitations involve breaking single
pair as in eqn. (10). In the general case no such simple relationship exists: nevertheless,
BdG equations enable us to relate (2N + 1)-particle states to (2N)-particle GS. (They do
not tell us directly about the (2N)-particle GS itself). The standard (PNC) approach goes
as follows: The exact Hamiltonian is

Ĥ − µN̂ =
∫
drψ†(r)

(
− ~2

2m
∇2 + U(r)− µ

)
+
∫∫

drdr′ψ†(r)ψ†(r′)V (r− r′)ψ(r′)ψ(r)

(17)
where U(r) is the single-particle potential. In PE term, make mean-field approximation:

ψ†(r′)ψ†(r)V (r− r′)ψ(r′)ψ(r)→ ∆(r, r′)ψ†(r′)ψ†(r) +H.C. (18)

where
∆(r, r′) ≡

∫
V (r− r′)〈ψ(r′)ψ(r)〉 (= c-number) (19)

So:

Ĥ − µN̂ =
∫
drψ̂†(r)Ĥ0ψ̂(r) +

{∫∫
drdr′∆(r, r′)ψ̂†(r)ψ̂†(r′) + H.c.

}
(20)

which is a bilinear form and can be diagonalized
In this (PNC) formalism, the GS is a superposition of even-N states. Similarly, the

excitations are superpositions of odd-N states and are generated by operators of the form
(operating on the GS)

γ†n =
∫
dr
{
un(r)ψ†(r) + vn(r)ψ(r)

}
(21)

with (positive) energies En (so Ĥ − µN̂ =
∑

n

Enγ
†
nγn + const.)

To obtain the eigenvalues En and eigenfunctions un(r), vn(r) of the MF Hamiltonian,
we need to solve the equation

[Ĥ − µN̂, γ†n] = Enγ
†
n (22)

Explicitly, this gives the BdG equations

Ĥ0un(r) +
∫

∆(r, r′)vn(r′)dr′ = Enun(r) (23a)∫
∆∗(r, r′)un(r′)dr′ − Ĥ∗

0vn(r) = Envn(r) (23b)

(
Ĥ0 ≡ − ~2

2m∇
2 + U(r)− µ

)
‡

‡Note that in absence of magnetic vector potential, Ĥ∗
0 = Ĥ0.
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General properties of solutions of BdG equations:

1. For En 6= En′ , the spinors
(un(r)

vn(r)

)
are mutually orthogonal, i.e., we can take

(un, un′) + (vn, vn′) = δnn′
(
(f, g) ≡

∫
f∗(r)g(r) dr

)
(24)

2. If
(
u
v

)
is a solution with energy En, then

(
v∗

−u∗

)
is a solution with energy −En. For

En 6= 0 the negative-energy solutions are conventionally taken to describe the “filled
Fermi sea.”

3. Under special circumstances, it may be possible to find a solution corresponding to
En = 0 and un(r) = v∗n(r). In this case

γ̂n ≡
∫
dr{u∗n(r)ψ̂(r) + v∗n(r)ψ̂†(r)} (25)

=
∫
dr{vn(r)ψ̂(r) + un(r)ψ̂†(r)} ≡ γ̂†n

i.e., the “particle” is its own antiparticle! Such a situation is said to describe a
Majorana fermion (MF). (Note: this can only happen when the paired fermions have
parallel spin, otherwise particle and antiparticle would differ by their spin)

Vortex in an s-wave Fermi superfluid

In a homogeneous s-wave superconductor, the gap ∆k is not appreciably a function of
the relative mom. k of electrons in a Cooper pair in the region near kF. So, when when
we consider an inhomogeneous situation, we can write ∆ simply as a function ∆(R) of
the COM coordinate R of the pairs; the form of ∆(R) must eventually be determined
self-consistently. Note that ∆(R) is, apart from a constant factor, the quantity

F (R) ≡ 〈ψ†
↑(R)ψ†

↓(R)〉 (26)

so it is a 2-particle quantity.
A vortex in an s-wave superconductor is described by a ∆(R)

of the form (for all R & ξ, where ξ is the pair radius).

∆(R) = f(|R|) exp iϕ (27)
(f(|R|)→ 0 for R→ 0)

Such a vortex has a circulation (at r � λL) of h/2m. Note that at first sight the form
(27) violates the SVBC (single-valuedness boundary condition): this is usually hand-waved
away by noting4 that the form (27) needs to be modified for r . ξ.

In the neutral case, the (mass) current is simply proportional to ∇(arg ∆(R)), so is
of the form ẑ × R/R2 out to arbitrary distances. Thus, the “quantum of circulation”
κ ≡

∮
vs · dl = h/2m.

4For a careful discussion of a closely related point see V. Vakaryuk, PRL 101, 167002 (2008).
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p + ip Fermi superfluid (F.S.)
Spinless case (↑↑ only, say) (Fermi alkali gases)

The orbital wf F (r, R) ≡ 〈ψ̂↑(R + r/2)ψ̂↑(R − r/2)〉, so cannot be written as a function
of the COM variable R alone; thus neither can the “gap” ∆. In homogeneous bulk (F
independent of the COM coordinate) various dependences on r are possible: the “p+ ip”
state is defined by having

F (|r|) = (x+ iy)F (|r|) (28)

or in momentum space, near Fermi surface,

F (p) = (px + ipy) (hence name) (29)

In a BCS-like theory in 2D, it is the energetically favored state. In principle the “gap” ∆
should be written as a function of both R and r. In practice it is usually written as

∆ = p−1
F ∆0(R)(∇x + i∇y)δ(r) (30)

where the pF is inserted so that ∆0(R) has the dimensions of energy, with the understanding
that the ∇ acts on the relative coordinate.

Vortices in a spinless (p + ip) F.S. neutral case:

The structure is similar to that in s-wave (BCS) case, with two differences; in that case
vortices with ∆ ∝ eiΦ and “antivortices” with ∆ ∝ e−iΦ were equivalent by symmetry, in
the (p+ ip) case we cannot assume this a priori.

Second difference with BCS: we expect Majorana anyons.

Existence of Majorana mode

Semiclassical approach5:

ĤBdG =
(

Ĥ0 ∆(r)
∆∗(r) −Ĥ0

)
Ĥ0 ≡ −

~2

2m
∇2 − µ

(31)

∆(r) is approximated by ∆(r) ' p−1
F ∆0(|r|) exp iφ · (p̂x + ip̂y),

or equivalently

∆(r) ∼ eiφ × |∆| · i(∇x + i∇y) (p̂ ≡ −i∇) (32)

5G. E. Volovik, JETP Letters 70, 609 (1999).
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Consider a wave packet with |momentum| ∼= pF, propagating through the origin, and write(
u
v

)
≡ exp iq · r

(
u′

v′

)
[q = x̂pF]. Then to lowest order in ∇, Ĥ ′

0 (the effective Hamiltonian
acting on

(
u′

v′

)
becomes

Ĥ ′
0 =

(
−ivF∂S ∆0 exp iφ

∆0 exp−iφ ivF∂S

)(
u′

v′

)
(∂S ≡ derivative along path S)

(33)

The crucial point is that since eiφ = −1 for S < 0 (L of origin) and = +1 for S > 0, this
becomes the simple 1D result

Ĥ ′
0 =

(
−ivF∂S ∆0 sgnS
∆0 sgnS ivF∂S

)(
u′

v′

)
(34)

This always has a zero-energy solution of the form (where the absolute phase is chosen to
make u′ = v′∗) (

u′

v′

)
= exp

iπ

4
·
(

1
−i

)
· exp

∫ S

ds′ sgn s′∆0(|s′|)/vF (35)

which is localized around origin on scale ∼ vF/∆0(∞) ∼ ξ. The usual argument is that from
the continuity of the number of levels “small” perturbations to the Hamiltonian cannot
remove this mode.

core

Read and Green obtain a similar result with a different
model of the vortex core: ∆(r) ∼ const. = ∆0

pF
(p̂x + ip̂y),

V (r) “[µ(r)]” varying in space. Then there exists an E = 0
solution of the BdG equations of the form(

u

v

)
= exp iπ/4

(
1
−i

)
exp−

∫ r

[V (r′)− µ]dr′ · pF/∆0 (36)

If we approximate V (r′) − µ ' V ′(r′ − r0) ∼ εF (r′ − r0)/ξ,
then the exponential becomes exp−k2

0(r − r0)2 (k0 ∼ kF ).
Note in this case the MF is localized within ∼ kF of the core
“edge,” whereas in Volovik’s calculations it is extended over
∼ ξ (and falls off as exponential, not Gaussian).

A single MF is intuitively “less than” a real (Dirac) fermion (cf. below). Where is the
“rest” of it?

Theorem: MF’s always come in pairs!
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This is because in any given experimental geometry containing a (p + ip) superfluid,
either the number of vortices/antivortices is even, or the form of the OP near the container
edge also sustains an MF.

But, for 2n vortices with n > 1, we do not know which MF to “pair” with which! The
$64K question is: what Berry phase does the Majorana fermion acquire when the gap ∆
rotates through 2π?

Intuitive argument: for an arbitrary “reference” phase χ we have

Ĥ ′ =
(

−ivF∂S ∆0(S) exp iχ
∆0(S) exp−iχ ivF∂S

)
(37)

so the generalized solution that preserves u = v∗ is(
u

v

)
=
(

exp i(π/4 + χ/2)
exp−i(π/4 + χ/2)

)
· exp−

∫ 2

ds′∆0(s′)/vF (38)

Thus after χ → χ + 2π,
(
u
v

)
→ −

(
u
v

)
, i.e., the Berry phase is π (just as for a regular

(Bogoliubov) fermion).
Suppose now that we have a system containing 2n vortices. Let’s number them

1, 2 . . . 2n in an arbitrary way, and consider the result of interchanging vortices. Ivanov
(ref. cit.) gives the following argument
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The vortex i “sees” no change in the phase of the superconducting order parameter ∆(r),
while the vortex i+1 sees a change of 2π. Hence the creation operators γ̂i of the Majorana
fermions transform under this exchange process (call it T̂i) as:

T̂i

{ γ̂i → γ̂i + 1
γ̂i+1 → −γ̂i+1

γ̂j → γ̂j for j 6= i, i+ 1
(39)

It is interesting that the operators T̂i so defined satisfy the commutation relations of
the “braid group,” namely

[T̂i, T̂j ] = 0 if |i− j| > 1 (40)
T̂iT̂jT̂i = T̂jT̂iT̂j if |i− j| = 1

Now let us consider the relation between the Majorana fermions and the real (Dirac)
fermions. The latter must satisfy the standard anticommutation relations

{ai, a
+
j } = 2δij , (41a)

a2
i = a+2

i = 0 (41b)

In view of the basic ACRS {ψ(r), ψ†(r′)} = δ(r− r′) (etc.) and the definition (25) of the
γ̂i the latter satisfy (41a) but not (41b). However, we can make up linear combinations
of γ̂i and γ̂i+1, which satisfy both (41a) and (41b) and hence can represent Dirac creation
and annihilation operators, as follows:

a+
i ≡

1√
2
(γ̂i + iγ̂i+1) (42)

ai ≡
1√
2
(γ̂i − iγ̂i+1)

Thus, as already noted, 2n Majorana fermions are equivalent to n Dirac fermions, and the
relevant Hilbert space is 2n-dimensional.

Now, what happens to the Dirac fermions when i and i + 1 are interchanged? From
(39) and (42) it is easy to see that they transform as follows:

a+
i → ia+

i , ai → iai (43)

Thus, if we consider the two qubit states |0〉 and |1〉 associated with the absence and
presence respectively of a Dirac fermion on vortices i and i+ 1, we have for the action of
the operator τ̂(Ti), which exchanges these two vortices

τ̂(Ti) :
{
|0〉 → |0〉
|1〉 ≡ a+

i |0〉 → ia+
i |0〉 ≡ i|1〉
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It is as if “half of” the Dirac fermion had been rotated through 2π. Explicitly, the matrix
representation of τ̂(T̂i) is

τ̂(T̂i) =
(

1 0
0 i

)
(44)

At this point we notice that for n > 1 the association of a given pair out of the 2n
Majorana modes to form a Dirac mode is quite arbitrary. For definiteness let us consider
the case n = 2 and associate MF’s 1 and 2 to make qubit 1 and MF’s 3 and 4 to make
qubit 2. Then we can represent the operator corresponding to exchange of 1 and 2, up
to an irrelevant overall phase factor, as τ̂(1 � 2) = exp iπ4 σ̂z1, and similarly the operator
corresponding to exchange of 3 and 4 as τ̂(3 � 4) = exp iπ4 σ̂z2. But what about τ̂(2 � 3)?

Although Ivanov (ref. cit.) uses a shortcut, the most foolproof way to determine the
effect of this operation is to change the basis so that the two qubits are now (1, 4) and (2,
3), so that we have in the new basis τ̂(2 � 3) = exp iπ4 σ̂z2, and finally reverse the basis
change. The result is

τ̂(2 � 3) =
1√
2


1 0 0 −i
0 1 −i 0
0 −i 1 0
−i 0 0 1

 ≡ 1√
2
(1− iσ̂x1σx2) (45)

which is clearly entangling.
Finally, we consider the “fusion” process. Supposed we have a vortex and antivortex

that recombine. They may or may not share a Dirac fermion. If they do not, they recombine
to vacuum, which we denote by 1. If they do, then as they approach one another to
recombine, the Dirac fermion, which for large separation of the vortices had zero energy,
acquires a nonzero energy and turns into a Bogoliubov particle, which we denote ψ. Thus,
denoting a vortex (antivortex) by σ, we get the “fusion rule”

σ × σ = 1 + ψ (46)

Further, two Bogoliubov quasiparticles can recombine to the vacuum, and the relevant
Bogoliubov qp cannot be associated with a single vortex; thus we get two further rules

ψ × ψ = 1 (47)
ψ × σ = σ

thereby recovering the results quoted in lecture 25.

The orthodox account: Further developments

1. Generalization to “spinful” systems ( 3He-A, Sr2RuO4, 2-species Fermi alkali gases):
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We need to assume that to a first approximation the 2 spin species are decoupled
and thus each is described by its own OP (∆↑(r) 6= ∆↓(r) in general).
Consider (a)an ordinary vortex ((∆↑(r) = ∆↓(r) ∼ exp iϕ) (there is lots of evidence
for these in 3He-A, Sr2RuO4). Then for each vortex we have 2 E = 0 modes, one
for each spin species. These are still each their own antiparticles, hence “genuine”
Majorana fermions, but this makes for complications in TQC. Hence, we look for (b)
a “half-quantum vortex” (HQV):

∆↓(r) = const.∆↑(r) 6= ∆↓(r) ∼ exp iϕ (48)

(Such a configuration has not to date been seen experimentally in 3He-A despite
searches; it may have been seen very recently in Sr2RuO4.)
Now there is an MF associated with the ↑ species, but none for the ↓ species, so we
are in business.

2. Effect of charge (Sr2RuO4):

Ivanov’s argument is prima facie for a neutral system: it should apply to a charged
system when inter-vortex distance is� ξ (pair radius) but� λL (London penetration
depth) At distances � λL, the AB flux associated with an ordinary vortex = ϕ0(≡
h/2e), so quasiparticle encircling it picks up AB phase of π (this is well known).
But for an HQV in a 2-species system, “induced vorticity” leads to an AB flux of
ϕ0/2(h/4e) and so to an AB phase of π/2 for a Dirac fermion. So, for a Majorana
fermion ...

I now turn to some conceptual issues concerning p + ip Fermi superfluids and the
Majorana fermions that may populate them.

1. The starting ansatz for the GS MBWF

Consider N spinless fermions in free space (i.e., impose periodic BC’s), forming
Cooper pairs in a “p + ip” state. The standard ansatz for GS MBWF in the PC
(particle-conserving) representation is, apart from normalization,

Ψ(0)
N =

(∑
k

c
(0)
k a†ka

†
−k

)N/2

|vac〉, c
(0)
k ∼ |c

(0)
k | exp iϕk (49)

Is this right? (Note it has Lz = N~/2 for arbitrary small ∆) Within the standard BCS
“mean-field” ansatz, we need to minimize the sum of the KE (which depends only on
〈nk〉) and the pairing terms, which depend on 〈a†ka

†
−ka−k′ak′〉. So any ansatz that
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gives the same values of ΨN for these will be, within this approximation, degenerate
with ΨN ! Consider then the ansatz

Ψ′
N =

(∑
k>kF

cka
†
ka

†
−k

)Np
(∑

k<kF
dka−kak

)Nh

|FS〉
↑

normal GS (Fermi sea)

(50)

where for the moment we see Np = Nh, so that N is unchanged from its N -state
value. For orientation lets provisionally go over to a BCS-like PNC representation
Ψ =

∏
k

(uk + vka
†
ka

†
−k)|vac〉. Then we reproduce the “standard” values of both 〈nk〉

and Fk ≡ 〈a−kak〉 provided we choose

ck = c
(0)
k , dk =

[
c
(0)
k

]−1
(51)

Indeed, at first sight it looks as if all we have done is to multiply the MBWF Ψ(0)
N by

the constant factor exp−i
∑

k<kF
ϕk! However . . .

Angular momentum of Ψ′
N :

Df:

Ω̂p ≡
∑
k>kF

cka
†
ka

†
−k =

∑
k>kF

|c(0)k | exp iϕk

Ω̂h ≡
∑
k<kF

dka−kak =
∑
k<kF

|c(0)k |
−1 exp−iϕk

(52)

so that
Ψ′

N = Ω̂Np
p Ω̂Nh

h |vac〉 (53)

Now:
[L̂z, Ω̂p] = ~Ω̂p

[L̂z, Ω̂h] = −~Ω̂h

}
possibly
counterintuitive

(54)

So since |FS〉 evidently has L̂z|FS〉 = 0,

L̂zΨ′
N = (Np −Nh)~ΨN = 0 (in approximation N = NFS) (55)

Caution: Ψ′
N as it stands does not reproduce 〈V 〉pair, because Np and Nh are sep-

arately conserved, so that while it gives the standard values for the p-p and h-h
scattering terms, it gives zero for the p-h terms. This difficulty is easily resolved:
Write Ψ′′

N =
∑

Np
k(Np)Ω̂

Np
p Ω̂Np

h |FS〉 where k(Np) is slowly varying over Np (range
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Fermi
surface

say ∼ N−1/2) and
∑

p |k(Np)|2 ' 1. Then the amplitude for p-h processes is propor-
tional to k∗(Np)k(Np − 1) ' |k(Np)|2, which sums to 1. Evidently, Ψ′

N → Ψ′′
N does

not affect the value of Lz. Thus, we have constructed an alternative GSWF that
is degenerate with the standard one (within terms ∼ N1/2) but has total angular
momentum zero (and hence cannot simply be a multiple of the standard one). Evi-
dently the $64K question is, which (if either) is correct? Note that the form of the
real-space many-body wavefunction has a quite different topology in the two cases.

2. Can we do without Majorana fermions? (indeed without “spontaneously broken
U(1) gauge symmetry”!)? The answer turns out to be yes. Recall the result for a
translationally invariant system in simple BCS theory: (up to normalization), for

even N , PC → ΨN =
[∑

k cka
†
ka

†
−k

]N/2
|vac〉. If we select the pair of states (k,−k),

this can be written
ΨN = Ψ̃(k)

N |00〉k + ckΨ̃(k)
N−k|11〉k (56)

where

Ψ̃(k)
N ≡

∑
k′ 6=k

ck′a†k′a
†
−k′

N/2

|vac〉

or with normalization

ΨN = u∗kC
†Ψ̃(k)

N−z|00〉k + v∗kΨ̃(k)
N−k|11〉k (|uk|2 + |vk|2 = 1)

where

C† ≡ N

∑
k′ 6=k

cka
†
k′a

†
−k′


turns the normalized state Ψ(k)

N−1 into the normalized state Ψ(k)
N .

Now consider the N + 1-particle states (odd total particle number). A simple ansatz
for such a state is the (normalized) state

|N + 1 : k〉 = Ψ̃(k)
N |10〉k (or Ψ̃(k)

N |01〉k) (57)

This is obtained from the expression (56) by the prescription

|N + 1 : k〉 =
(
uka

†
k + vka−kC

†
)

ΨN ≡ α̂†kΨN (58)
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Unsurprisingly, this state turns out to be an energy eigenstate with energy (relative
to E0(N)+µ) of Ek ≡

√
(εk − µ)2 + |∆k|2 Note that one can form another expression

of this type, namely
β̂†k ≡ v

∗a†k − u
∗
ka−kC

† (59)

such that β̂†kΨN ≡ 0

i.e., β̂†k is a pure annihilator. An arbitrary operator of the form λa†k + µa−k can be
expressed as a linear combination of α̂†k and β̂†k. For each 4-D Hilbert space (k,−k)
there are 2 quasiparticle creation operators and 2 pure annihilators.

Generalization to non-translationally-invariant case

Let’s assume, for the moment, that the even-N groundstate is perfectly paired, i.e.,
that

ΨN (≡ |N : 0〉) = N
[∫∫

drdr′K(rr′)ψ†(r)ψ†(r′)
]

(60)

where K(r′) is some antisymmetric function. Then there exists a theorem6 that we
can always find an orthonormal set {m, m} such that ΨN can be written

Ψn = N ·

(∑
m

cma
†
ma

†
m

)N/2

|vac〉 (i.e. (m,m′) = (m,m′) = δmm′ , (m,m′) = 0)

(61)
We could now proceed by analogy with the translation-invariant case by constructing

the quantity Ψ̃(m)
N ≡

(∑
m′ 6=m cma

†
m′a

†
m′

)N/2
|vac〉, etc. Then if we define cm =

vm/um as in that case, the operators β̂†m ≡ v∗ma
†
m − u∗mam are pure annihilators (as

of course are any linear combinations of them). However, in general, in contrast
with the translation-invariant case, states of the form |N1 : m〉 = Ψ̃(m)

N |01〉m are not
energy eigenstates. The true N + 1-particle energy eigenstates are superpositions:

|N + 1 : En〉 =
∑
m

qm(En)|N + 1 : Em〉+ (m→ m)∑
m

|qm(En)|2 + (m→ m) = 1
(62)

6See e.g., Yang, RMP 34, 694 (1962) lemma in Appendix A.
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Equivalently, we can write

|N + 1 : En〉 =

{∑
m

(ũma
†
m + ṽmamC

†) + (m→ m)

}
|ΨN 〉 (63)

≡
∫ [

u(r)ψ† + v(r)ψ(r)C†
]
|ΨN 〉 (ũm ≡ qmum, ṽm ≡ qmvm)

which (apart from the PC factor C†) is exactly the form postulated in the BdG
approach. The functions u(r) and v(r) are now determined by solving the BdG
equations exactly as in the standard approach. But note we never had to relax
particle conservation!

Nature of “Majorana Fermions”

In the standard approach, the BdG equations are equivalent to the statement that [ĤBdG, γ
†
n]

|ΨN 〉 = Enγ
†
n|ΨN 〉. For En > 0 the interpretation is unambiguous: γ†n|ΨN 〉 is an N + 1-

particle energy eigenstate with energy (µ+)En (“Dirac-Bogoliubov fermion”). But we know
that if (u, v) is a solution with En > 0, then (v∗, −u∗) is a solution with energy eigenvalue
−En. These negative energy solutions are usually interpreted in terms of the “filled Dirac
sea.”

However, the above equation is entirely compatible with the statement that γ†n|ΨN 〉 ≡
0! Hence, in the present PC approach, we interpret the “negative energy” γ†n’s as pure
annihilators. There must be exactly as many pure annihilators as there are DB fermion
states. Suppose there exists a DB fermion with E = 0, and wavefunction (u, v) satisfying
the BdG equations. The corresponding pure annihilator β†0 automatically satisfies them,
also with E = 0 (indeed any E!). Then let α†0 create the E = 0 DB fermion, and consider
γ†0 = eiπ/4(α†0 + iβ†0). The wavefunction (u, v) corresponding to γ†0|ΨN 〉 obviously satisfies
the BdG equations with E = 0, and moreover satisfies u(r) = v∗(r). Hence it conforms
exactly to the definition of a “Majorana fermion.” A second MF is generated by eiπ/4(α†0−
iβ†0).

Conclusion: In the PC representation, a “Majorana fermion” is nothing but a quantum
superposition of a real “Dirac-Bogoliubov” fermion (N+1)-particle energy eigenstate) and
a pure annihilator.

Consider in particular the case where α†0 = α†1 + iα†2 with 1 and 2 referring to spatially
distant positions. Then the two MF’s will each be localized, at 1 and 2 respectively.

Illustration: An (ultra-)toy model

Consider N (=even) spinless fermions that can occupy (a) a “bath” of states that need
not be specified in detail, or (b) two specific states 0, 1 (“system”). We use a notational
convention such that whenever the number of particles in the “system” changes by +2(−2),
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the operator C(C† is applied to the bath so as to conserve particle number. Then the effect
of the bath is to supply to the effective (BdG-type) Hamiltonian of the system a term of
the form

∆a†0a
†
1 + H.c. (64)

There will also be in general a “tunnelling” term, of the form

ta†0a1 + H.c. (65)

and a term of the form U0a0a0 + U1a
†
1a1, which we will set = 0. Let’s make the special

choice
∆ = it (66)

and measure energies in units of t. Then

ĤBdG = (a†1a0 − ia†1a
†
0) + H.c. (67)

The GS is easily found to be

ψ0 =
1√
2
(1 + ia†1a

†
0)|vac〉 (68)

or more accurately

ψ0 =
1√
2
(1 + ia†1a

†
0 Ĉ)|vac〉 (69)

where |vac〉 ≡ (no particles in system, N in bath).
Consider now the linear combinations of the operators a†0, a

†
1, a0, a1 : The operators

Ω̂1 ≡
1√
2
(a†1 − ia0), Ω̂2 ≡

1√
2
(a†0 − ia1) (70)

are pure annihlators. The operator∏̂
1
≡ 1

2
(a†1 + ia0 − a†0 + ia1) (71)

when acting on ψ0 creates the “+” state ψ+ = 1√
2
(a†1 + a†0)|vac〉 with energy 1 and the

operator ∏̂
2
≡ 1

2
(a†1 + ia0 − a†0 + ia1) (72)

creates the “−” state ψ− = 1√
2
(a†1 − a

†
0)|vac〉 The ψ− state has zero energy relative to the

GS.
The 2 MF’s are linear combinations of the pure annihilators and the zero-energy DB fermion
state ψ−:

M̂0 ≡ −
∏̂

−
+ Ω̂1 + Ω̂2 = a†0 − ia0 (73)

M̂1 ≡ +
∏̂

−
+ Ω̂1 + Ω̂2 = a†1 − ia1 (74)


