Problem Sheet 2 – Phys 598 – Fall 2009

Problem Sheet 2

All these problems have to do with weak localization and/or interaction in 2D systems such as metallic films. Unless otherwise stated you should assume that the system is "locally" 3D (i.e. thickness $d \gg k_{\rm F}^{-1}, l$). In problems 1 and 2, neglect effects of interactions, except in so far as they may be phase-breaking.

1. Consider scattering of the conduction electrons by a set of localized spins \mathbf{S}_i , where the interaction is

$$H_{\rm ss} = -\sum_{i} J_i \boldsymbol{\sigma} \cdot \mathbf{S}_i f(|\mathbf{r} - \mathbf{R}_{0i}|), \quad f(r) = \theta(a - r)$$

where the positions \mathbf{R}_{0i} and directions of the \mathbf{S}_i are random unless otherwise stated, and the value of $J|\mathbf{S}|$ is Gaussian-distributed with mean square J_0^2 .

- (a) If the localized spins are polarized in a strong Zeeman field, is there any effect on weak localization? If so, which sign does it have? (You should convince yourself (and me!) that the Zeeman polarization of the *conduction* electrons is irrelevant to leading order in μ_BH/ε_F. Ignore the orbital effects of the magnetic field.)
- (b) Find an expression for the single rotation which is effected by the sequence $R_1 R_2 R_1^{-1} R_2^{-1}$, where $R_j(\hat{\omega}_j, \theta_j)$ is a rotation through angle θ_j around axis $\hat{\omega}_j$.
- (c) (easy) Show that for random directions of the \mathbf{S}_i the mean free time $\tau_{\rm sf}$ of a conduction electron against spin flip is of order $\tau_0 \equiv 1/n_s a^2 v_{\rm F}$ if $J_0 a/\hbar v_{\rm F} \gg 1$ and of order $(\hbar v_{\rm F})^2/J_0 n_s v_{\rm F}$ if $J_0 a/\hbar v_{\rm F} \ll 1$. $(n_s =$ number of impurities per unit volume.)
- (d) Using the results of (b) and (c), show that in the context of weak localization the effect of spin-spin scattering is phase-breaking, and find (the order of magnitude of the) equivalent dephasing time τ_{ϕ} in terms of τ_0 and τ_{sf} .
- (e) Assuming that the elastic scattering time τ is $\ll \tau_0$, what is the relation of the corresponding dephasing lengths?

- 2. A given metallic film has thickness d = 1000 Å, elastic mean free path l = 10 Å, and spin-orbit length $L_{SO} = 10 \mu$ and typical values of the electron-electron and electronphonon interactions. It contains no magnetic impurities. Discuss the *qualitative* behavior of the magnetoresistance in a perpendicular magnetic field up to 10 T at
 - (a) room temperature
 - (b) 5 K
 - (c) $0.1 \,\mathrm{K},$

giving rough estimates of any characteristic "crossover" fields introduced. (Assume that any "classical" contributions to the magnetoresistance are negligible on the scale of 10 T).

- 3. This question relates to the density-density response function $\chi_0(\mathbf{q}, \omega)$: For the definition and some basic properties in 3D see, e.g., Pines + Nozières, *Quantum Liquids*, ch. 2
 - (a) Derive the form of Im $\chi_0(\mathbf{q}, \omega)$ for a 2D Fermi gas at $T = 0, q \ll k_{\rm F}, \omega \ll \epsilon_{\rm F}$. Does it have any singularities? If so, where and of what type?
 - (b) If one inserts this expression into the formulae of lecture 7, what is the correction to the single-particle density of states from interactions in the limit $\epsilon \to 0$?
 - (c) Suppose we substitute for $\chi_0(\mathbf{q}, \omega)$ the "full" density-density response function as calculated from Landau Fermi-liquid theory, with, for simplicity, all Landau parameters $F_l^{s,a}$ set equal to zero except for F_0^s . How are the results affected?

[Note: In part (c) you do *not* need to determine the real part of $\chi(\mathbf{q}, \omega)$ for arbitrary $s \equiv \omega/qv_{\rm F}$, only its approximate behavior close to the singularity.]

Solutions to be put in 598PTD homework box (2nd floor Loomis) by 9 a.m. on Mon. 28 Sept.