Problem Sheet 3

- 1. Imagine a world in which ⁴He has never been liquified, but theorists know that ⁴He atoms are bosons (and know about BEC) and have calculated the approximate density of a possible liquid phase ($\approx 2.2 \times 10^{22} \text{ atoms/cm}^3$). By using Hohenberg's lemma, what can they say about the maximum condensate fraction (a) at 4 K (b) at 2.17 K?
- 2. (a) (very easy) By using standard Ginzburg-Landau (mean-field) theory and the definition of the superfluid density $\rho_s(T)$, show that in the limit $T \to T_c \rho_s$ has the form for both superfluid ⁴He and superconductors (within mean-field theory)

$$\rho_s(T) = \text{const.} \ \rho(1 - T/T_c) \equiv \text{const.} \ \rho t$$

where ρ is the total density, and give an argument that for a translation-invariant system the constant must be of order unity.

- (b) Consider liquid ⁴He in an annular pore of (circular) cross-section $(50\text{\AA})^2$ and circumference 1 cm. (This might be a primitive model of ⁴He in Vycor). Make a rough estimate, using the result of part (a), of the value t_0 of $t (\equiv 1 T/T_c)$ at which the system loses long-range order.
- (c) The same as for (b), for a film of ${}^{4}\text{He}$ of thickness 10 Å and area 1 cm².
- (d) Are the results qualitatively affected by the replacement of the mean-field form of $\rho_s(T)$ in part (a) by what is believed to be the true behavior in the limit $T \to T_c$, namely $\rho_s(T) \sim \rho(1 T/T_c)^{\zeta}$, $\zeta \approx 2/3$?
- 3. Consider the "Langer-Fisher" (LF) mechanism for decay of superflow, in which a (3D) vortex ring is nucleated and (may) expand to the boundaries of the system.
 - (a) Using the formulae of lecture 10, determine the approximate dependence of the free energy barrier for this process on the superfluid velocity v_s .

- (b) For the situation discussed in problem 2, part (b), at temperatures of the order of t₀, which process is more probable: the LF process, or a "bulk" phase slip in which a complete cross-section of the pore is turned normal?¹ Consider this question (i) for the lowest circulating state (κ = 1) (ii) for v_s ~ 10 m/sec.
- (c) Under the conditions of part (b), is the system "effectively" superfluid?

Solutions to be put in 598PTD homework box (2nd floor Loomis) by 9 a.m. on Mon. 12 Oct.

¹ You may assume that so long as $v_s \ll \hbar/m\xi(T)$ where $\xi(T)$ is the GL healing length, the superflow does not contribute appreciably to the free energy of the bulk phase-slip processes.