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The superconductor-insulator transition in dirty metallic films1

Since around 1980 it has been appreciated that if in certain kinds of metallic film one varies
the degree of disorder, thickness and/or the magnetic field while keeping the chemical
composition constant, the system may make a transition between a superconducting and
an insulating state. Interestingly, there are two major approaches to explanation of these
phenomena, related respectively to the effects of disorder on the single-electron spectrum
discussed in lectures 4-7 and to the fluctuations of the phase of the superconducting order
parameter that have been the subject of lectures 8-12 (through as we shall see, the relevant
fluctuations in this case are quantum rather than classical in nature).

The films in question are typically obtained by sputtering (or sometimes by vacuum
deposition at helium temperatures) of a metal such as In, Mo or Bi, sometimes accompanied
by a nonmetallic element such as N, O or Si, on a substrate such as Ge or AlO. Typical
examples are Bi, InxOy, MoxGey, AuxSiy . . . ; note that none of these elements form
localized magnetic moments. Magnetic fields are typically in the range 0.1-1 T. Thicknesses
d are typically in the range 4-80 Å (thus, d may be either small or large compared to the
Cooper-pair radius, which we recall in a dirty metal is ∼ (ξ0l)

1/2 (ξ0 = pair radius in pure
metal, l = elastic mfp). A very important characteristic of any given film is R�, the “sheet
resistance” (resistance per square) in the (high-temperature) normal state (which is usually
nearly temperature-independent): the general order of magnitude of this quantity at the
S-I transition is the “quantum unit of resistance”, RQ ≡ h/4e2 ∼= 6.45kΩ; we will see below
that this may not be an accident.

While all the relevant samples are amorphous (i.e. noncrystalline), an important ques-
tion is the degree of homogeneity. This may vary considerably between samples of different
composition and/or deposited on different substrates; however, it seems unlikely to depend
strongly on film thickness (or of course on magnetic field). The general belief is that for
e.g. Bi deposited on a Ge substrate the disorder is likely to be on the atomic scale, while
other kinds of film may be inhomogeneous on a more mesoscopic scale, say ∼ 102 Å; such
samples are often called “granular”, and sometimes modelled as collections of metallic “is-
lands” connected by Josephson junctions. Ideally of course we should try to characterize
the degree of homogeneity by some technique such as atomic force microscopy, but this
has not always been done, particularly in the earlier experiments, and thus there is often
some uncertainty about the degree of granularity.

For any given film the raw data typically consists of the resistance R(B, T ) (often
expressed as a sheet resistance) as a function of temperature T and magnetic field B. (A
few experiments have also measured the Hall resistance.) In the early experiments2 of the
Minnesota group on Bi quenched on to an α-Ge substrate the data are extremely clean, as

1General reference: A. M. Goldman, Physica E 18, 1 (2003).
2Haviland et al., Phys. Rev. Lett. 62, 2180 (1989)
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shown in the figure. Thin films show a strong upturn in the resistance at low temperatures,
apparently tending to an insulating state in the limit T → 0, while thicker ones experience
an abrupt decrease of resistance to an unobservably small value at a (thickness-dependent)
temperature of a few K, indicating a transition to the superconducting state. Since the
dependence of the (inverse) sheet resistance R� on thickness is presumably monotonic,
one can say that films of high R� become insulating while those of lower R� (higher
conductance) become superconducting. Two very significant features of the data are that
(1) no normal-metallic state appear to exist in the limit3 T → 0, and (2) the “critical”
normal-state sheet resistance Rc which marks the separatrix between superconducting and
insulating behavior is very close to the quantum unit of resistance RQ. I postpone for the
moment the question of the behavior in magnetic fields (which was not examined in this
particular set of experiments).

Not all thin dirty metallic films show quite so

2 A.M. Goldman / Physica E 18 (2003) 1–6

Fig. 1. Evolution of the temperature dependence of the resistance
R(T ) with thickness of a series of a-Bi !lms deposited onto a-Ge.
Fewer than half of the traces are shown. Adapted from Ref. [9].

of !nite-size scaling analyses supporting the existence of
quantum critical points separating superconducting and in-
sulating ground states are presented. Here !lm thickness and
magnetic !eld are the tuning parameters. The !nal section
considers a number of unresolved issues. These include per-
sistent evidence of the role of fermionic degrees of freedom,
and more recent concerns relating to the nature of the ground
states, the presence of metallic phases, and the role of dis-
sipation. Some of the experimental challenges that must be
overcome in order to develop a complete understanding of
this problem are also identi!ed.

2. Experimental

The extent of modi!cation of the properties of supercon-
ducting !lms by disorder depends on its strength and geo-
metrical scale relative to other lengths such as the inverse
Fermi momentum, the electronic mean free path, the Lon-
don penetration depth, the BCS coherence length, and the
zero-temperature Ginzburg–Landau coherence length. The
length scale for disorder in a !lm is determined by pro-

cessing. Without special precautions, thin !lms as deposited
may be inhomogeneous, with a length scale for disorder
that is mesoscopic, i.e., ∼ 102 "A. In certain sputtered !lms,
and in metal !lms deposited onto a-Ge substrates held at
liquid helium temperatures [13], the scale for disorder can
be at or near atomic lengths. Without an a-Ge underlayer,
the set of curves of R(T ) as a function of thickness in such
quench-deposited !lms is more complex than that of Fig.
1, with reentrant superconducting behavior and local super-
conductivity and metallic behavior preceding the appear-
ance of global superconducting order [14]. Films with such
complexity exhibit mesoscale disorder as demonstrated in
atomic force microscope studies [15]. When the substrates
are pre-coated with a thin layer of a-Ge, atomic scale dis-
order is obtained because the underlayer enhances wetting
of the substrate by the !lm, preventing agglomeration into
mesoscale clusters. A caveat is that there may still be clus-
ters as structural studies are not de!nitive. The underlayer,
although by itself not conducting, may enhance the electri-
cal coupling between clusters giving rise to electrical con-
nectivity at very early stages of growth.
Most of our experiments were carried out by repeated

deposition of small increments of metals that are supercon-
ducting in bulk onto substrates held at liquid helium tem-
peratures, alternated with in situ electrical measurements at
dilution refrigerator temperatures. Fig. 1 is an example of
what can be obtained using this approach. Many of the other
experiments on SI transitions employed sputtered !lms of
InxOy, MoxSiy, and MoxGey [10–12,16]. Structural charac-
terizations of !lms of the same composition as those use to
study the SI transition, indicated that they amorphous and
free of clusters. High temperature superconductors in vari-
ous con!gurations have also been investigated [17,18].

3. Scaling of the thickness and magnetic-!eld driven SI
transitions

The physics of dirty bosons [8] is concerned with the
problem of Bose particles in a random medium. Although
originally considered in the context of helium, it has been
used to treat superconductors by considering Cooper pairs
to be point-like, charge 2e bosons in a random potential,
interacting with a long range Coulomb force. This has been
justi!ed because models of superconductivity based on a
!nite temperature Bose condensation and those based on the
BCS theory belong to the same universality class. In the
dirty boson picture, the SI transition tuned by disorder or
magnetic !eld is a QPT (for a relatively simple review see
Ref. [19]).
A standard approach to establishing the existence of a

QPT is to carry out a !nite size scaling analysis of transport
data. To appreciate how this works, we note a key feature
of QPTs, the interplay of dynamics and thermodynamics. A
d-dimensional quantum system at !nite temperature is de-
scribed in the T → 0 limit, as long as the dynamical critical

clear-cut a behavior as a function of thickness and
temperature as the above ones; for example, in some
cases the behavior of R(T ) is nonmonotonic, and in
others it appears to flatten off as a function of T
above the lowest temperature reached (typically ∼
0.1 K), indicating the possibility of a normal-metallic
state (in zero magnetic field) in the limit T → 0;
this happens not only in some films that are prob-
ably granular, but even in some samples of Bi on
Ge, and in this case the flattening persisted down to
the much lower minimum temperature of the experi-
ment, less than 50 mK. This last data is fairly recent
and probably needs further confirmation (cf. Gold-
man, op.cit.); it is of course not taken into account in
the theoretical analyses that were conducted earlier.

Turning now to possible interpretations of the
data, let’s start with an old and classic observa-
tion of Anderson: weak nonmagnetic disorder should
not affect the superconducting transition qualita-
tively. The reason is that while the plane-wave states
exp ik · r are no longer eigenstates of the single-
particle Hamiltonian, and hence cannot (at least prima
facie) be used to form Cooper pairs, it is still possi-
ble to find pairs of exact eigenfunctions of the single-
particle Hamiltonian Ĥ0 ≡ − ~2

2m∇
2 + U(r) that are

related to one another by time reversal. For exam-
ple, if as is normally the case one can choose the
eigenfunctions of Ĥ0 to be real functions ϕn(r) such that Ĥ0ϕn(r) = εnϕn(r), then a suit-

3Assuming that the curves very close to the separatrix turn up or down at a temperature below the
lowest accessible in the experiment.
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able choice of pairs would be simply (ϕn, ↑) and (ϕn, ↓) with ↑, ↓ the spin eigenstates. One
then forms the groundstate along the lines of BCS, but replacing the plane waves k ↑,−k ↓
by (ϕn, ↑), (ϕn, ↓), i.e.

Ψ0 =
∏
n

(un + vna
+
n↑a

+
n↓)|vac〉 (1)

The subsequent calculations proceed exactly as in the original BCS theory; since the
average single-particle DOS near the Fermi energy is little affected by the disorder, and
the (coarse-grained) matrix elements Vnn′ for pair scattering do not vary much from the
free-space elements Vkk′ , it follows that the thermodynamic properties of the disordered
system, including Tc, are very close to those of the original pure one.4 (Of course, there
may be substantial effects on quantities such as the superfluid density ρs(T ) which relate
to transport.)

However, it is known that even in 3D sufficiently strong disorder will localize the single-
particle states near the Fermi energy; and we saw in lectures 4-7 that in 2D such localization
inevitably occurs in the limit T → 0 however weak the disorder. So what happens to
superconductivity at this point? In the normal phase the system is certainly an insulator;
and it is extremely tempting to argue that even if Cooper pairs form from the localized
single-electron states, they will be, like these states, unable to propagate, and thus the
paired system will remain an insulator. Remarkably, this plausible conclusion turns out
to be wrong!5 The basic reason is that while the single-particle wave functions no longer
extend over the whole volume of the sample as in the pure metal, and hence in (e.g.) a ring
geometry cannot be affected by an AB flux, the two-particle (Cooper pair) wave function,
regarded as a function of the COM variable, does so extend and thus is sensitive to an AB
flux. So we get the remarkable prediction that in a 3D system in which in the absence of
an attractive interaction the disorder is sufficient to localize all the single-particle states,
switching on an attractive interaction (e.g. due to the exchange of virtual phonons) will
produce the following result: at temperatures > some T0, where T0 is generally speaking
of the order of the Tc of the pure (non-disordered) system, the system will be a good
insulator; however, the moment that T falls below T0 it will become not just conducting
but superconducting! Whether this state of affairs has been seen in existing experiments
is debatable; 6 in any case it may be possible in future to verify (or refute) the prediction
using ultracold Fermi atoms in a disordered optical lattice.

In any case, one might guess that when the localization of the single-particle states gets
too strong, it might be energetically disadvantageous to form Cooper pairs at all. A very
rough criterion might be that the energy spacing of the single-particle levels in a volume
of the order of the localization length ξloc becomes comparable to the bulk energy gap ∆0;

4If anything, the “smoothing” of the matrix elements by disorder tends to increase Tc.
5Bulaevskii and Sadovskii, JETP Lett. 39, 11 (1984); Ma and Lee, Phys. Rev. B 32, 5658 (1985)
6See Sadovskii, Phys. Rep. 282, 225 (1997).
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in 2D this would then give us the condition for the destruction of superconductivity

ξ2loc .
~2

2m∆0
∼ k−1F ξ0 (2)

where ξ0 is the Cooper-pair radius in the pure material. Since in a 2D system the
localization length is exponentially large

(
O
(
l exp(kF l)

)
even at T → 0

)
, it seems unlikely

that this transition would be experimentally accessible, except perhaps in the very dirtiest
materials.

Unfortunately, as always in the localization problem, it turns out that this consider-
ation is anyway too simple: one needs to take into account the interplay of disorder and
interaction effects which, as discussed in lecture 7, changes the low-energy single-particle
energy spectrum qualitatively. The ensuing calculations, for which field-theoretic methods
are unavoidable, are discussed in detail by Finkelstein.7 Without going into the details, we
note (a) that the primary physical affect responsible for the suppression and eventual de-
struction of superconductivity in this approach turns out to be that since a pair of electrons
moves diffusively rather than ballistically, the repulsive Coulomb interaction is enhanced
and, of course, tends to inhibit Cooper pair formation (b) at least for elastic mean free
path l � d (thickness of film) (so that the system is “locally” 3D) the depression of Tc
relative to its value Tc0 for the pure material is given in perturbation theory by the formula

ln(Tc/Tc0) =
−e2

6π2~
g1R�(ln 1/Tcτ)3 (3)

where τ is the normal-state elastic scattering time, R� is as above the normal-state
sheet resistance and g1 is a dimensionless parameter characterizing the screened Coulomb
interaction. Evidently this formula does not lead to suppression of Tc to zero for any value
of τ , so it cannot by itself describe the S-I transition. A more sophisticated renormalization-
group calculation, however, does predict that superconductivity vanishes (and hence the
system presumably reverts to the insulating state) when

(e2/2π~)R� ∼ (1/ lnTc0τ)2 (4)

Note that since R� and τ are independent variables, the S-I transition does not occur
at a universal value of R�.

The point to stress about the above approach is that it is essentially a theory of the
conditions under which local Cooper pairing is or is not favorable. The thermodynamics
is thus very similar to that in the original BCS theory, and in particular it unambiguously
predicts that the single-particle energy gap ∆ (which can be measured, at least in principle,
by e.g. tunnelling or specific heat measurements) should scale with Tc just as in that theory
and thus approach zero as we approach the S-I transition from the S side. Another way

7Finkelstein, Physica B 197, 636 (1994).
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of putting it is that in this approach the reason superconductivity is destroyed by disorder
is that the amplitude of the order parameter Ψ(r) is driven to zero, not that its phase
fluctuates as in the KT transition.

An alternative, very different approach to the S-I transition in thin dirty metallic films is
based on the idea that the superconducting order parameter is locally defined throughout
the whole of the parameter space, but that while in the S phase it possesses long-rang
phase coherence (LRO), on the I side of the transition the phase fluctuates so wildly
(due to quantum, not thermal affects) that no LRO is possible and the system becomes
insulating. Thus, the S-I transition qualitatively resembles the KT transition which, as
we saw in lecture 12, is believed to occur in helium films and also in some (less dirty) 2D
metallic films. However, in the present case the transition does not occur in a given film as a
function of temperature, but rather occurs at or close to zero T as a function of parameters
such as thickness and sheet resistance (i.e. disorder). It is thus an example of a quantum
phase transition (QPT), that is a phase transition that occurs at zero temperature as one
or more parameters of the system are varied. We need, therefore, to explore the general
theory of such transitions a little.8

QPT’s can of course occur in any number of (spatial) dimensions, including zero (see
below), so the problem they pose is not restricted to d = 2. Exact analytic results can be
obtained in only a small number of cases, of which the best known is the 1D Ising model in
a transverse field. Where no analytic solution is available, the theory of QPTs relies heavily
on mapping the d-dimensional quantum problem to an equivalent d+1-dimensional classical
problem and then using the large body of results which have been obtained over the last 40
years concerning (classical) second-order phase transitions. Let’s illustrate this procedure
with a particularly simple example, namely a 2D Josephson junction array. We already
looked briefly, in lecture 12, at the experimental results on this system in a particular limit
(see below) and saw that they are consistent with the hypothesis that it sustains a KT
transition at a finite temperature determined by the strength EJ(≡ J) of the Josephson
coupling. A point that will be essential in the arguments below is that the important length
scales involved in the KT transition (ξ±) diverge in the limit T → TKT, which means that
the “bending” of the OP phase in the relevant region is very gentle and the system cannot
tell the difference between the actual Hamiltonian, which refers to discrete grains, and a
simple continuum such as would be realized by a 4He film. (Technically, these two different
systems are said to belong to the same “universality class.”)

The Hamiltonian of the Josephson junction array was taken in lecture 12 to consist
only of a potential energy that depends on the relative phase of the OP on neighboring
dots:

V = EJ
∑

ij=n.n.

cos(ϕi − ϕj) (5)

8For a readable short review of QPT’s, see Sondhi et al., RMP 69, 315 (1997), or for a more extended
discussion, S. Sachdev, Quantum Phase Transitions.
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where Ej is (in zero external magnetic field) a positive constant. For small phase
drops ϕi − ϕj between nearest neighbors, (5) is equivalent to a continuum model with an
equaivalent superfluid density ρs0(T ) given by

ρs0(T ) = (2m/~)2EJ (6)

(note that the spacing of the dots does not enter). The order of magnitude of TKT

is therefore9, perhaps unsurprisingly, EJ . Note that this means that for T ∼ TKT the
mean-square value of ϕi − ϕj is not very small, so that the problem must be handled
self-consistently and the difference between ρs0 and ρs may be substantial. However, this
does not affect the crucial point that the critical behavior at TKT is sensitive only to
configurations in which |ϕi − ϕj | � 1.

The above discussion is appropriate to “classical” Josephson junction arrays, by which
we mean arrays in which the dots are large enough, and the inter-dot Josephson coupling

EJ strong enough, that EJ � Ec, where Ec ≡ (2e)2

2C is the capacitive energy necessary to
transfer a Cooper pair from one dot to its neighbor. However, for small dots and/or weak
Josephson coupling Ec may be comparable to or even much larger than EJ . What is the
form of the relevant term in the Hamiltonian? There are a number of ways of deriving
it, of which the simplest is probably to note that the voltage Vij between a pair i, j of
neighboring dots is given in terms of the time derivative of ∆ϕij by the second Josephson
equation

Vij =
~
2e

d

dt
(∆ϕij) (7)

Thus, for a single pair of dots (∆ϕij → ϕ) the total Hamiltonian can be written
(Φo ≡ h/2e = superconducting flux quantum)

Ĥ =
1

2
CV 2 − EJ cosϕ =

1

2
C

(
Φ0

2π

)2

ϕ̇2 − EJ cosϕ (8)

To express Ĥ in terms of ϕ and its canonically conjugate momentum pϕ, we define
pϕ ≡ ∂T/∂ϕ̇ = C(Φ0/2π)2ϕ̇, which from (7) is just (Φ0/2π) times CV = Q, the charge
transferred across the junction; the “kinetic energy” T (the first term in (8)) is then just
p2ϕ/(2C

(
Φ0/2π)2

)
≡ Q2/2C. However, it will actually be more convenient for our purposes

to keep the Hamiltonian in the (non-canonical) form (8), i.e. to regard it as a function of
ϕ and ϕ̇ rather than of ϕ and pϕ.

The Hamiltonian (8) of a single pair of dots connected by a Josephson junction is
nothing but that of a simple quantum pendulum, with the quantity EJ corresponding
to the gravitational potential and the quantity C(Φ0/2π)2 playing the role of moment of

9Of course EJ may itself be temperature-dependent, but such dependence is likely to be on the scale
of the bulk 3D BCS transition temperature Tc0, which in real life is typically � EJ(T = 0); thus it may
safely be neglected in the present context.
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inertia. A simple analysis shows that in the limit Ec � EJ the groundstate of the system
has ϕ close to zero and the low excited states are harmonic-oscillator-like with frequency
ωJ ≡

√
EJEc/~, while for Ec � EJ the groundstate is approximately the state of zero

angular momentum (i.e. uniform with respect to ϕ) and excited states are rotor-like. For
intermediate values of K ≡ Ec/EJ the problem can be solved to high accuracy by numerical
methods, and it is found that the crossover is smooth as a function of K.

Let’s now return to our 2D array. From the above considerations, the Hamiltonian,
including capacitance effects, can be written in the form

Ĥ =
∑

ij=n.n.

{
1

2
C(Φ0/2π)2 ϕ̇2

ij − EJ cos ϕij

}
(ϕij ≡ ϕi − ϕj) (9)

Let us consider the partition function

Z(β) ≡ Tr exp−βĤ (β ≡ 1/kBT ) (10)

In principle, if we can write Z as a function not only of β but of arbitrary “external
source” terms, then by differentiating with respect to these source terms we can obtain the
expectation value, in thermal equilibrium, of an arbitrary (time-independent) operator. So
it contains complete information about all the static properties of the system.

Before proceeding, we need to dispose of one technical point: Let’s write ϕij ≡ ϕi−ϕj ,
so that the “kinetic energy” term in (9) becomes

T =
1

2
C(Φ0/2π)2

∑
ij=nn

(ϕ̇2
i + ϕ̇2

j − 2ϕ̇iϕ̇j) (11)

The last term has the form

const.

(∑
i

ϕ̇i

)2

= const.

(∑
i

Vi

)2

(12)

It is clear that this term can always be eliminated by a suitable choice of the zero of voltage
(electrochemical potential). Hence we can legitimately write

T =
1

2
C̃(Φ0/2π)2

∑
i

ϕ̇2
i (13)

where C̃ = 2zC, z = number of nearest neighbors. We will use this form rather than that
in (9) below.

It is well known that whether the system is quantum or classical, the partition function
can be written in path-integral form in “imaginary time” τ (we suppress any dependence
on external source terms):

Z(β) =
∏
i

∫
Dϕi(τ) exp−

∫ β~

0
H [ϕi(τ)] dτ/~ (14)
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Formula (14) is exact. When the temperature is high compared to the relevant character-
istic frequencies ω of the system, so that ωτ � 1 over the whole range O < τ < β~, there
is no “time” for fluctuations of ϕi as a function of τ to occur, and they may be set equal to
their values at say τ = 0; the “kinetic energy” term

(
the first term in (9)

)
now contributes

at most an uninteresting constant, and we can replace (14) by the classical expression

Zel(β) =
∏
i

∫
Dϕi exp−βV {ϕij} (15)

Now comes the nontrivial “trick”. We insert the full quantum expression (9), with
the replacement (13), into (14) and postulate that for the purposes of deriving the critical
behavior the important imaginary-time trajectories have the property that the “gradients”
of the ϕi are “small,” not just in space but also in (imaginary) time, in the sense that
ϕi(τ + ∆τ) − ϕi(τ) � 1 when ∆τ is an appropriate small time interval (to be defined
below). We then discretize the integral in the exponent of (14), replacing the continuous
variable τ by a set of discrete values τn ≡ n∆τ , so that considering the n, n + 1 pair of
times and the phase ϕi

T = (const.) (∆τ)−2
(
ϕi(τn+1)− ϕi(τn)

)2
(16)

∼= const.− const. 2 (∆τ)−2
(

cos {ϕi(τn+1)− ϕi(τn)}
)

Hence the exponent S of the functional integral in (14) takes the discretized form

S = ~−1
{∑

n

∑
i

(
−1

2
C̃(Φ0/2π)2(∆τ)−1

)
cos
[
ϕi(τn+1)− ϕ(τn)

]
−EJ∆τ

∑
ij=n.n.

cos
[
ϕi(τn)− ϕj(τn)

]} (17)

It is clear that the structure of the two terms is exactly the same. In fact, if we make the
specific choice ∆τ = ~/

√
EJEc where Ec now ≡ (2e)2/2C̃ and remember that ∆τ = β~/Lτ

where Lτ is the number of “time” steps, we can write

S = − 1

K

∑
i,n

cos
(
ϕi(τn+1 − ϕ(τn)

)
+
∑
ij=nn

cos
(
ϕi(τn)− ϕj(τn)

) (18)

where
K ≡ (Ec/EJ)1/2 (19)

We can now change the notation so that ϕi(τn) → ϕin and the functional integral (14)
then takes the discretized form

Z(β)→
∏
i,n

∫
Dϕi,n exp− 1

K

−∑
in

cos(ϕi,n+1 − ϕi,n)−
∑

ij=n.n.

cos(ϕi,n − ϕj,n)

 (20)
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But this is nothing but the classical partition function of a 3-dimensional array of Josephson
junctions, with the quantity K playing the role of kBT/Ej and the physical temperature β
now playing the role of the “width” Lτ (number of sites) in the third dimension! Thus we
can immediately read off some of the properties of the 2D zero-temperature QPT from our
knowledge of the behavior of the 3D classical phase transition of the XY-model

(
since this is

just the model described by (18)
)
. In particular, since we know that in the thermodynamic

limit the 3D XY model has a phase transition from an ordered to a disordered state at a
value of kBT/EJ ∼ 1, it follows that at zero temperature (Lτ → ∞) the quantum model
should have a similar transition at a value of K ∼ 1. (However, we cannot necessarily
identify the constant factors in the two cases, since these may be senstive to short-range
effects for which the replacement (16) need not be valid.) Moreover, as K approaches the
value of Kc, we expect a divergence of the characteristic length scale which is identical in
form to that of the 3D XY model for T → Tc; in fact, if

ξ3D(T )→ |T − Tc|−ν (21)

then at the 2D QPT ξ2D(K) should diverge in the same way:

ξ2D(K)(T=0) → |K −Kc|−ν . (22)

For the 3D XY model both theory and experiment (on superfluid 4He) suggest that ν is
close to 2/3.

It should be cautioned that we could make this specially simple correspondence between
the zero-temperature d-dimensional QPT and the (finite-T ) d+1-dimensional classical one
only because we could argue that for the trajectories which play the crucial role in the tran-
sition the form of the “time-axis” interactions is approximately the same as the “space-axis”
ones, namely cos(ϕn−ϕn+1). This feature is not generic to QPT’s; it is essentially equiva-
lent to the statement that for the classical phase transition the exponents of the divergent
correlation length ξ and the divergent correlation time ξτ , which are conventionally called
ν and zν respectively, i.e.

ξ ∼ |T − Tc|−ν (23a)

ξτ ∼ |T − Tc|−zν (23b)

are the same, i.e. z = 1. If the classical d+ 1-dimensional phase transition does not satisfy
this condition the relation to the quantum d-dimensional transition is more complicated.

For values of K much less than Kc our 2D Josephson junction array is clearly qualita-
tively similar to the 3D array well below Tc, i.e. it possesses LRO (remember, we are for
the moment at T = 0, so the HMW theorem does not forbid this!) and behaves as a super-
fluid. What is the nature of the phase which occurs at values of K greater than Kc? Here
the analogy with the classical transition is less useful, since the latter automatically occurs
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at finite T where there are already many excitations. However, explicit consideration of
a similar model, the Bose alkali gas in an optical lattice, suggests that this phase has a
definite number of particles (in our case Cooper pairs) on each lattice site (dot); unless we
are close to Kc such a phase should have an energy gap of the order of the capacitance
energy Ec, and thus at zero temperature should be insulating. Thus the transition we have
discovered in the 2D Josephson junction array might plausibly be regarded as correspond-
ing to the superconductor-insulator transition observed experimentally in thin fiilms, at
least those of sufficient granularity.

What can we say about the behavior of the

 

T

KKc

TKT T crossover

superfluid

normal

insulating

system at nonzero temperatures and K close to
Kc? Actually, scaling considerations help us quite
a bit. Consider first the general nature of the
phase diagram. We know that for K � Kc we
have (except very close to zero temperature) a
2D classical XY model, which has a KT transi-
tion, at a temperature ∼ EJ , from a phase with
(topological) LRO to a “normal” phase. So there
must be a phase boundary (locus of second-order transitions) in the K-T plane. Also, we
know that at T = 0 the “disordered” phase is an insulator while at high T (crossing over
from the KT transition) it is a normal “liquid”; hence there must be a rough separatrix in
the K-T plane between normal-metallic and insulating behavior; however, this could be a
smooth crossover since no symmetry is broken on either side and the resistivity is expected
to be continuous. Qualitatively, we should expect this crossover to occur at a temperature
T (K) ∼ ∆(K) where ∆ is the excitation gap at zero temperature. Anticipating the result
that ∆(K) → 0 for K → Kc (see below) we therefore find the phase diagram should look
qualitatively like shown in the figure. Let’s try to be a bit more quantitative. We recall
that the length along the “time” axis, Lτ , is proportional to the inverse temperature β.
Thus, as temperature increases, Lτ decreases. We should expect that the behavior changes
qualitatively at the point where Lτ becomes of the order of ξτ

(
∼ ξ for our (z = 1) case

)
for the 3D problem; beyond this, the classical “3D” problem becomes that of a “slab” of
thickness < ξτ , whose behavior we should expect to be essentially 2D. This criterion gives a
critical temperature (for K < Kc) TKT(K) of order ξ−13D(K), and since ξ3D ∼ |(K −Kc)|−ν
we find

TKT(K) = const.(Kc −K)ν (24)

A similar argument on the insulating side shows that the crossover temperature (which is
only defined up to an order of magnitude) should satisfy

Tcrossover(K) = const.(K −Kc)
ν . (25)

Hence the phase diagram is roughly as shown in the figure: since for our case ν < 1, there
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is a cusp at the QCP T = 0, K = Kc.
Although we have worked out this scenariopic, and the dynamical exponent z!1. Then the Fourier

transform of the correlation function for the
(d"1)-dimensional problem is

G!k ,"n#$%!k2""n
2 &#2"'d"1, (19)

where the (d"1)st component of the ‘‘wave vector’’ is
simply the Matsubara frequency used to Fourier trans-
form in the time direction. Analytic continuation to real
frequencies via the usual prescription (Mahan, 1990)
i"n→""i( yields the retarded correlation function

GR!k ,""i(#$%k2#!""i(#2&!#2"'d"1#/2. (20)

Instead of a pole at the frequency of some coherently
oscillating collective mode, we see instead that
GR(k ,""i() has a branch cut for frequencies above
"!k (we have implicitly set the characteristic velocity
to unity). Thus we see that there is no characteristic fre-
quency other than k itself [in general, kz as in Eq. (16)],
as we discussed above. This implies that collective
modes have become overdamped, and the system is in
an incoherent diffusive regime. The review by Sachdev
contains some specific examples that nicely illustrate
these points (Sachdev, 1996).

Finally, three comments are in order. First, as we saw
in the example of the Josephson-junction array, a finite
temporal correlation length means that there is a gap in
the spectrum of the quantum problem. Conversely, criti-
cal systems are gapless. Second, the exponent z is a mea-
sure of how skewed time is, relative to space, in the
critical region. This does not, a priori, have anything to
do with what happens in either of the phases. For ex-
ample, one should resist the temptation to deduce the
value of z via "$qz from the dispersion of any Gold-
stone mode21 in the ordered phase. This is incorrect
since the exponent z is a property of the critical point
itself, not of the ordered phase. Third, we should restate
the well-known wisdom that the diverging lengths and
the associated scaling of physical quantities are particu-
larly interesting because they represent universal behav-
ior, i.e., behavior insensitive to microscopic details
within certain global constraints such as symmetry and
dimensionality (Goldenfeld, 1992).

B. T ) 0: Finite-size scaling

So far we have described the framework, appropriate
to the system at T!0, that would describe the underly-

ing QPT in any system. As the experimentally accessible
behavior of the system necessarily involves a nonzero
temperature, we need to understand how to modify the
scaling forms of the previous section for the T ) 0 prob-
lem.

The crucial observation for this purpose is, as noted
earlier and illustrated in Fig. 4, that the only effect of
taking T ) 0 in the partition function of Eq. (5) is to
make the temporal dimension finite; in particular, there
is no change in the coupling K with physical tempera-
ture. The effective classical system now resembles a hy-
perslab with d spatial dimensions (taken to be infinite in
extent) and one temporal dimension of size L*+,- . As
phase transitions depend sensitively upon the dimen-
sionality of the system, we expect the finiteness of L* to
modify the critical behavior, since at the longest length
scales the system is now d dimensional.

This modification can take two forms. First, it can de-
stroy the transition entirely so that the only critical point
is at T!0. This happens in the case of the 1D Josephson
array. Its finite-temperature physics is that of an XY
model on an infinite strip, which, being a one-
dimensional classical system with short-range forces, is
disordered at all finite values of K (finite temperatures
in the classical language).

In the second form, the modification is such that the
transition persists to T ) 0 but crosses over to a different
universality class. For example, the problem of a 2D
Josephson-junction array maps onto a 3(!2"1) dimen-

21A Goldstone mode is a gapless excitation that is present as
a result of a broken continuous symmetry in the ordered phase
of a system. Broken continuous symmetry means that the en-
ergy is degenerate under a continuous family of uniform global
symmetry transformations, for example, uniform rotation of
the magnetization in an XY magnet. This implies that nonuni-
form but long-wavelength rotations must cost very little en-
ergy, and hence there exists a low-energy collective mode in
which the order parameter fluctuates at long wavelengths (see
Goldenfeld, 1992; Chaikin and Lubensky, 1995).

FIG. 5. Illustration of the phase diagram for a Josephson-
junction array in two dimensions. K is the quantum-fluctuation
parameter, and T is the physical temperature. The solid line
represents the Kosterlitz-Thouless critical temperature for the
phase transition from the normal state to the superfluid. The
solid line ends at the quantum critical point (QCP), where the
critical temperature goes to zero. For K greater than its critical
value, the system is insulating at zero temperature. For any
finite temperature it is not insulating. The dashed line repre-
sents the crossover from temperatures smaller than the
(T!0 insulating) gap to temperatures greater than the gap.
This is not a true phase transition; however, the conductivity
can be expected to increase rapidly as the temperature goes
above this line.
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for the particular case of a 2D JJ array (which
happens to correspond to z = 1), it should be
qualitatively valid for an arbitrary second-order
QPT, with the proviso that while the separatrices
T0 still satisfy the criterion Lτ ∼ ξτ , the quantity
ξτ in general scales like |K −Kc|−zν (where K is
now a general control parameter), and so we have

T0(K) ∼ const. |K −Kc|zν . (26)

We can actually go somewhat further. Con-
sider a physical quantity such as the dc resistivity
R, as a function of K and T . Since this corre-
sponds to k = ω = 0, it does not by itself define
a length or time scale. Hence it must be a func-
tion only of the ratio of the two “large” lengths
in the problem, namely ξτ and Lτ . Since Lτ ∼ T−1 and ξτ ∼ |K −Kc|−νz, it follows that
(δ ≡ K −Kc)

R(δ, T ) = Rcf (δ · T−1/νz) (27)

where Rc may be taken as the resistivity exactly at the QCP. Of course, the function f
could have a different form on the two sides of the transition.

This result should hold irrespective of the nature of the control parameter. It turns
out that a similar scaling relation can be derived for the dependence on the electric field
applied across the sample

Rc(δ, E) = Rcf(δ · E−1/ν(z+1)) (28)

We now return to the experimental situation. The S-I transition in thin metallic films
can be tuned by thickness, disorder (if we believe that is a different variable), magnetic
field or electric field. Some of the data, for example those taken on amorphous Bi grown
on an α-Ge substrate fit the scaling relation (27) beautifully; see Goldman, ref. cit., fig.
2. Since these experiments measure νz while the scaling with electric field (also observed)
measures ν(z+1), one can extract the values of ν and z independently; Goldman concludes
that the best values are

z = 1, ν = 0.7(∼= 2/3) (29)

These are to a good approximation the values that would be expected (cf. above) if the
effective control parameters were the ratio (Ec/EJ)1/2. However, this observation raises
some questions, since it is not at all obvious that the thickness of the film, still less the
magnetic field, is particularly strongly correlated with this ratio. . .


