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More on topological insulators: the experimental situation

The simple model explored in lecture 22 allows us to draw some important qualitative
conclusions concerning the phenomenon of topological insulators. First, let’s consider the
relation to the QHE. This may not be immediately obvious, since most discussions of the
QHE neglect the existence of a crystalline lattice (except in so far as it leads to the replace-
ment of the real electron mass m by an effective mass m∗); this is usually experimentally
realistic since when both the inter-electron distance and the magnetic length are very large
compared to the lattice spacing, and thus the relevant electrons never get anywhere near
the edge of the FBZ and a single-band picture appears to be quite adequate. On the other
hand, the difference between a TI and a standard band insulator appears to depend essen-
tially on the behavior of the band structure over the whole of the FBZ. Thus, at first sight
there is not much relationship between the two phenomena.

However, it is perfectly possible to analyze the (integral) QHE taking into account
completely the effects of the periodic crystalline lattice, and this was done in a famous
1982 paper1 by Thouless and co-workers (usually known as TKNN). They found that
under certain conditions the effect of the magnetic field is to split the energy levels of
the system into sub-bands, with each band being characterized by a topological quantum
number similar (but not identical) in form to (22.25). They further sketched an argument
(filled out in more detail a few years later by Hatsugai2) that in this case there would
automatically be chiral edge states (that is, states which can propagate in one direction
only as in the “free-space” QHE) which would interpolate between the bands. The TKNN
analysis neglects the spin degree of freedom, but it was subsequently realized that in the
case of a system in zero magnetic field, the spin-orbit coupling could in effect play the role
of an external field whose “sense” however depends on the spin. Indeed the model analyzed
in lecture 22 can be viewed in precisely this way: the “up” and “down” spin electron are
completely decoupled, and each behaves effectively as an independent QHE system, with a
Chern number (“TKKN number”) which is +1 for the up spins and −1 for the down ones.
Since time reversal (TR) inversion is not broken, there can be no charge current flowing
around the edges of the system, but nothing prevents a spin current from doing so. (Recall
that the expression for the spin current,

∑
i σipi/m, is even under TR).

We must briefly discuss the question of the “protection” of the edge modes by time-
reversal invariance (TRI). In the simple model of lecture 22, this is rather trivial: In fig.
22.10, we see that two modes cross the gap completely, thus interpolating between the
valence and conduction bands and allowing metallic behavior at the surface. Suppose now
that some perturbation mixes the two modes, then by the usual “level-repulsion” arguments
we would expect the picture to change to that shown in fig. 1 so that there is now a nonzero
gap and the surface states behave as an insulator. The crucial point, now, is that because
the modes have different values of the (real) spin projection sz, no perturbation which com-

1Thouless et al
2Hatsugai
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mutes with sz (e.g. scattering by nonmagnetic impurities) can mix the states in this way.

Fig. 1

To mix them would require, for example, a magnetic field,
in the direction parallel to the plane (hence perpendicular to
sz) and this then suggests that such a field should have a
dramatic qualitative effect.

Before moving beyond the simple model of lecture 22, let’s
finally examine the rather delicate question of the symmetry
and periodicity of the Bloch states. Consider the Hamiltonian
Ĥ(k) associated with the Bloch state k, which according to
(22.) is a matrix in the pseudospin space (for the moment we
suppress the spin degree of freedom):

Ĥ(k) = −σ̂k ·Hk (1)

If we extend k beyond the FBZ, then we see that the crystal periodicity implies that if K
is any reciprocal lattice vector then

Ĥ(k +K) ≡ Ĥ(k) (2)

and in particular for each of the four states ki, i = 1, 2, 3, 4 lying at the center of an FBZ
edge

Ĥ(ki) ≡ Ĥ(−ki) (3)

Further information can be obtained from invariance, if it occurs, under space inversion P̂
and time reversal T̂ . For this purpose, it is convenient to combine the separate spinors for
sz = ±1 into a single pair-component spinor whose components are labeled by sz = ±1,
σz = ±1.

The parity operation P̂ then simply changes k to−k, without any effect on the structure
of the spinor, while time reversal T̂ also changes k to −k but at the same time effects
the operation −iŝy on the (real) spin degree of freedom, plus complex conjugation. The
Hamiltonian is now, for general k, a 4× 4 matrix; however, in the case of the four points
ki eqn. (3) plus TRI inplies that it separates into two 2 × 2 components describing two
Kramers doublets.

We now come to a delicate point. In lecture 21: we posited not only eqn (2) above but
also that the Bloch functions ukn(r) satisfy a similar relation:

uk+rk(r) ≡ ukn(r) (4)

However, the explicit construction of the energy eigenstates in lecture 22 clearly does not
satisfy this condition: at (for example) the special points k1,k3 = ±K1/2 the construction
of eqn. (22.20) gives opposite phases for the ukn, whereas eqn (4) would require them to
be the same!
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But now we need to raise the awkward question: Is the phase of the uk physically
meaningful in the first place? Consider the simple case of a single filled band described
by (spinless, pseudospinless) Bloch states uk(r). The many-body GSWF is the scalar
determinant

Ψ(r1, r2, ..., rN )) = A
∏

k∈FBZ
uk(ri)exp ik · ri (5)

Suppose now we multiply each uk(r) by some arbitrary phase factor exp iϕ(k) (where
ϕ(k) need not be a continuous function of k). We see that the effect is simply to multiply
the many-body wave function (5) by the overall factor

∏
k∈FBZ exp iϕ(k) ≡ exp iA,A ≡∑

k∈FBZ ϕ(k), which clearly can have no physical significance! A similar argument should
prima facie apply to the case considered in lecture 22 provided each spinor is multiplied
by an overall phase factor.

This argument is not quite as strong as it looks. What is the physical situation described
by eqn (5)? It has to be a system confined, in real space, to an appropriate box, with
the single-particle wave functions subjected to periodic boundary conditions. For such a
“theoretical” system, the conclusion that the overall phases of the ukn’s do not matter is
probably correct. But in real life we are interested in physical systems which have real
surfaces (edges) and now the (relative) phases ϕ(k) do matter – close to the edges the
scalar determinant of Bloch waves given by eqn. (5) is misleading; we still of course have
a scalar determinant, but generically of a linear superposition of Bloch waves, when the
relative phases matter. So we cannot shrug off the problem quite so easily...

Returning, then, to the dilemma posed above, there seem to be two obvious possible
ways of resolving it. One, which seems to be the majority preference, is to require that
eqn. (4) be maintained; since if we also require un(k) to be continuous throughout the
FBZ, we then get an unwanted singularity at the origin, we then need to define un(k) to be
continuous but different in overlapping regions of the FBZ and then “glue them together”;
this is the procedure favored eg by Bernevig in his book. The alternative procedure would
seem to be simply to abandon eqn. (4) (which is in some sense a special case of the former
approach, with the “glueing” occurring along the FBZ edges). To my mind this is the
simpler convention, and I will follow it. Note that none of the above is relevant to the
definition of the Chern number, which is entirely in terms of the direction of σ.

We now consider how to generalize the simple model of lecture 22. An important point,
particularly when we come to 3D generalization, is that in the general case sz does not
commute with Ĥ. This means that we can no longer treat the sz = ±1 states separately
and assign them individual Chern numbers: however, time reversal invariance may well still
hold (we shall assume it does3) and may then be expected to produce somewhat similar
results.

A first shot might involve the observation that for the TI of lecture 22 the phases of the

3Note in particular that while inversion invariance automatically fails near a surface, TRI may well still
hold there.
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(σz = −1) components of the spinor are, for sz = +1, 0, π/2, π, 3π/2 whereas for sz = −1
they are 0,−π/2,−π,−3π/2 (or equivalently 0, 3π/2, π, π/2) i.e. the “chirality” is reversed.
By contrast, for the band insulator the (σz = +1) component for both sz all have phase
0 (or constant). Hence one might try to take the quantity (where ψi denotes the orbital
component only)

4∑
i=1

(ψ
(sz=+1)
i , ψ

(sz=−1)
i ) (6)

which takes the value +1 for the BI and 0 for the TI, as an indicator of the differences.
However, using the form of the TR operator T̂ (which, recall, reverses k, operates with
−iŝy on the spinor and complex conjugate) we see that (6) is equivalent to

Q ≡
4∑
i=1

(ψ
(1)
i T̂ψ

(2)
i ) (7)

where ψ
(1)
i , ψ

(2)
i are the two occupied eigenstates. It is therefore plausible to regard the

expression Q as an appropriate indicator of the TI/BI distinction: Q = 1 for a BI, 0 for a
TI. Or equivalently we can define

ν = 1−Q

so that ν = 0 for a BI and 1 for a TI. As far as I know this possible definition has not been
explored in the literature.

In any case, a proper characterization of TI’s versus band insulators needs to somehow

Fig. 2

reflect the fact that the pseudospin configuration changes non-
trivially between the origin (k = 0, “Γ-point”) and the edge
of the FBZ. Thus we expect that we need to involve somehow
not only the TRI points on the edge of the FBZ but also those
at k = 0. To motivate the standard approach4, let us proceed
as follows: Consider the four TRI points:

Γ1 : k = 0

Γ2 : k = Gx/2

Γ3 : k = (Gx +Gy)/2

Γ4 : k = Gy/2

with Gx ≡ (G/2)x̂,Gy ≡ (G/2)ŷ, G ≡ 2π/a

Staying for the moment with the model of lecture 22, let’s consider the argument of the
quantity λi ≡ ψ∗↑ψ↓(Γi), where ψ↑,↓ are the orbital were functions associated with the (real)
spin states sz = ±1. Since at Γ1 we can (by convention) choose the phases of ψ↑,↓ to be

4e.g. Fu and Kane, PR B 74. 195312 (2006)
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identical, and at the other 3 Γ-points ψ↑↓ ∝ exp ± iθ where θ is the angle made by a line
to the k = 0 point with (say) the x-axis, we have

λ1 = 0, λ2 = 0, λ3 = π/2, λ4 = π (8)

By contrast, for a band insulator all four λi are zero. How to express this difference
quantitatively?

The answer given in the literature4 goes as follows:
For each point TRI point Γi (i = 1, ...4) consider the 2D matrix

w(i)
µν ≡ 〈uµ(−ki)|T̂ |uν(−ki)〉

where uµ(µ = 1, 2) labels, the two spinor states occupied in the groundstate, and T̂ is the
time reversal operator. Since T̂ 2 = −1 for fermions, and the points Γi are TR invariant,
wµυ is an antisymmetric matrix. We now define

δi ≡ w(i)
µν/

√
w

(i)2
µν (9)

so that δi can take only the values ±1. The tricky part is the treatment of the square root:
the claim is that we can define this so as to stay on the same branch throughout the whole
of the FBZ, and, apparently, that if we do this for the case of the model of lecture 22, then
three of the four δi’s will be +1 and the fourth −1 [not obvious; further discussion in the
lecture]. (For the band insulator it is clear that all four δi’s can be chosen to be +1). The
general definition of a “Z2 invariant” which will distinguish TI’s and BI’s is then

(−1)ν ≡
4∏
i=1

δi (10)

so that ν = 0 for a band insulator and 1 for a topological insulator.

Fig. 3

How then to generalize this idea to three dimensions? The simplest scheme goes as
follows: We add four more TRI points in the (now 3D) FBZ by translating each of the
four Γi by Gz/2 where Gz ≡ Gẑ. In this way the 8 Γi’s form a cube, and by arguments
similar to those for the 2D case we can assign a number δi = ±1 to each of them: see fig
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3 (taken from Fu and Kane 2006). We can now define (a) a Z2 quantum number for each
pair of faces separately (call these ν1, ν2, ν3) but also a fourth quantum number νo = ±1
which has no 2D analog:

νo ≡
8∏
i=1

δi

We note that if νo = 0 (the case of a so-called “weak 3D TI”) then the quantities
νi(i = 1, 2, 3) are formally independent of which faces of the cube we consider, whereas in
the case ν0 = 1 (“strong 3D TI”) they are different; we then say that νi = 1 by convention
(cf. (a - d) in fig. 3).

In general it turns out that the nature of the surface states is strongly dependent on
the value of νo. For the case νo = 0 (weak TI) either there are no edge states bridging the
gap, or they exist in the ideal case but are not robust against scattering by e.g. magnetic
impurities. For the νo = 1 (strong TI) the surface states are much more interesting: on
each surface there exists one (or in general case an odd number) of “Dirac cones” with an
energy related to momentum k and (real) spin s by the formula

E(k) = s · k × n̂

where n̂ is the normal to the surface: note that this expression is correctly invariant under
both P and T . Thus, we get “spin-momentum locking” as shown in fig. (9) below.

Let’s now turn to the experimental evidence for topological insulators. This, like the
theory, is already after 5 years a vast subject, and I can only scratch the surface. By
definition, a TI, whether 2D or 3D, is insulating in bulk, and it is usually difficult to see
anything spectacular. One exception is the quantum Hall effect (in 2D systems); because
of the mixing of conduction- and valence-band-states in a TI (as for that matter in a
band insulator with substantial spin-orbit interaction) the filling of the Landau levels as a
function of doping is anomalous. This will not be discussed here. The experiments done5

on the surfaces of (putative) TI’s are mostly of two types, surface transport and ARPES.
The original 2D system tested (5) for TI-type behavior (according to the predictions of
Bernevig et al.) is a quantum well heterostructure consisting of states of CdTe and HgTe:
see fig (4). In the experiments the total width dtot was always ≤ 40 nm, so since the
effective mass m* is not very different from m, the first “transverse” excited state has
excitation energy E ∼ 1K, so at the temperature of the experiment (∼ 50 mK) it should
be legitimate to treat the whole system as effectively 2D. However, crudely speaking, CdTe
is a band insulator whereas HgTe has TI-like characteristics: more quantitatively. Bernevig
et al. predicted that for d less than a critical value dc which they estimated as ∼ 6 nm,
the heterostructure should behave as a simple band insulator, whereas for d > dc it should
be a 2D TI. In either case we can tune the Fermi energy EF by varying the gate voltage
and hence the carrier density n; of course, when EF lies within either the valence or the

5König et al., Science 319, 766 (2007)
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conduction band we would expect the system to behave as a metal independently of its
TI/BI character, so the interesting case is when EF lies in the bulk gap; in that case
the BI should show insulating behavior, and indeed the experiments done on a sample
width dc = 4.5 nm (< dc) show a (longitudinal) resistance Rxx several orders of magnitude
greater than h/e2 (and consistent with ∞).

Fig. 4

What do we expect in the TI phase? On inspection of fig. (5), we see that there
is exactly one state of the correct chirality on each edge, so according to the Landauer
formula we would predict I = (2e2/h)V or Rxx = h/2e2 ≈ 12kΩ And, lo and behold, for
d = 8 nm (> dc) and EF in the bulkless gap, a substance close to this volume is seen in
the experiments!

Fig. 5

Is this a fluke coincidence? Two circumstantial pieces of
evidence are (a) that Rxx is independent of the sample width,

which indicates that it (or rather the conductance R
(−1)
xx ) is

likely a surface effect (b) the fact that the conclusion
∑

xx is
strongly supported by even small magnetic fields ∼ 0 · 05T
(see fig. 6). This strongly suggests that the suppression is
a consequence of the branching of time reversal invariance.
Moreover, the fact that the suppression is a strong function
of the direction of the field, being essentially absent for fields
parallel to the 2D surface, indicates that the effect does not have to do with the Zeeman
coupling but is a consequence of the orbital effect of the field.

An even more convincing surface conductance experiment6 by the same (Würzburg)
group used the 6-terminal geometry shown in fig. 7. For this kind of setup the Landau-
Büttiker theory gives a relation between the currents Ii in the i-th lead and the voltages

6Roth et al., Science 325, 294 (2009)
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Vj in the j-th lead:

Ii = (e2/h)
∑
j

(TjiVi − TijVj) (11)

Fig. 6

when Tij is the total transmission amplitude (Tij =∑
ν T

(ν)
ij where ν is a channel label) from lead i to lead j.

For the quantum hall effect (a “chiral” case) the quantity
Ti,i+1 is nonzero but Ti,i+1,i = 0, and we can work out the
consequences. For the TI (“QSH”) case, by contrast, there is
exactly one channel of each chirality (with of course opposite
spins), so we have a quite different result:

Ti,i+1 = Ti+1,i = 1 ; all other Tij zero.

We can substitute this result into (11) and solve to find the currents Iij between leads i
and j in terms of the voltages Vkl applied between leads k and l. In particular we find for
a 4-terminal measurement (quite differently from the predictions for a simple QH state)
for Rij,kl ≡ VklIij

R14,14 = 3h/e2, R14,23 = h/2e2

This is well verified in the experiment.

Fig. 7

The other major class of existing experiments uses
ARPES. For reasons of adequate intensity, this has to be
done on surfaces rather than edges, i.e., we require a bulk
3D system; the simplest example to date is Bi2Se3. One
can and does measure the energy spectrum, thereby confirm-
ing the “level-crossing” picture of lecture 22, fig. 10 (see fig.
8). However, even more interestingly, it turns out that by
measuring the spin polarization of the ejected photo elec-
trons one can infer the average spin polarization of the sur-
face states from which they were ejected. The result for
〈Si〉(i = x, y, z) as a function of ky is shown schematically
in fig. (8). This confirms the prediction (cf. above) that the spin of the surface states
is perpendicular both to the wave vector k and to the surface normal n̂ ≡ ẑ: thus the
picture is, as predicted theoretically, that shown in fig. (9a) for a view along the sur-
face, and that of fig. (9b) for a view from the direction perpendicular to the surface.
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Fig. 8


