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Topological Superfluids: Majorana Fermions

The subject of topological superfluids, though they werel not originally called by that
name, actually antedates that of topological insulators, and has played a major role in the
attempt to implement topological quantum computation (see lectures 25 and 28). Crudely
speaking, the analogy with TI’s goes as follows: in a crystalline solid with spin-orbit
coupling, the single-particle energy eigenstates are hybridized quantum superpositions of
two different levels of the original Hamiltonian (that without SOI). If the hybridizing SOI
has a suitable form and magnitude, the system will be a topological insulator, and in
that case one inevitably finds, at the surface, E = 0 excitations which are a superposition
of the two bands with equal weight (see lecture 22). In the case of a Fermi superfluid,
the “unhybridized” Hamiltonian is the kinetic energy, so that the two “bands” of single-
particle excitations are the particles and the holes, and at this stage there is no energy gap
(corresponding to M = 0 in the “toy model” of lecture 22). The role of the hybridizing
term is played by the“off-diagonal field” in the BCS theory. When this is taken into account
the single-particle eigenstates are hybridized quantum superpositions of a “particle” and a
“hole” state 1; the energy gap is now generally speaking nonzero in the bulk. However, if
the off-diagonal field has an appropriate form and magnitude, we may as in the TI case find
E = 0 excitations at a surface, or more generally in regions where the off-diagonal field has
sharp discontinuities (e.g. at a vortex). Similarly to the TI case, these E = 0 excitations
(and, sometimes, the nonzero-k branch derived from them) are an equal superposition of
a particle and a hole, they have very exotic properties (in particular, they are their own
antiparticles, and in the case of a metal have no net charge); they are called Majorana
fermions. Thus the analogy with the case of a TI is most direct in the context of the
excitations at a surface or other singularity, and less so in the context of the bulk.

We now give a brief account of the “orthodox” approach to topological Fermi superfluids
2 Since it turns out that systems which form Cooper pairs in a spin singlet state (such as the
electrons in a classic BCS superconductor) cannot show interesting topological effects, we
may as well specialize right away to the case of spin triplet pairing. In the simplest case of
such pairing (which is believed to be realized in the A phase of superfluid 3He and possibly
in some superconductors) the spin axes can be chosen so that only parallel-spin particles
are paired (↑↑, ↓↓) (“equal-spin-pairing (ESP) states”), and to a first approximation we
can treat the ↑↑ and ↓↓ pairs as independent systems so that the spin index drops out
of the problem. Thus in the following discussion we shall for simplicity treat the case of
(fictitious) “spinless” fermions.

The generic “particle-conserving” BCS ansatz for N spinless fermions (N even) moving

1At least according to the standard presentations: c.f. however below.
2See the chapters by T. Hughes in the Bernevig book.
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in free space is

ΨN =

(∑
k

cka
†
ka
†
−k

)N/2
|vac〉, where ck = −c−k (from antisymmetry) (1)

In the literature, it is more common to use the PNC (particle non-conserving) form:

ΨBCS =
∏
k

(uk + vka
†
ka
†
−k)|vac〉, uk = u−k, vk = −v−k (2)

with

uk ≡
1

(1 + |ck|2)1/2
, vk ≡

ck
(1 + |ck|2)1/2

(3)

so that |uk|2 + |vk|2 ≡ 1, ck = vk/uk.
Two important quantities in BCS theory are

〈nk〉 = |vk|2, Fk ≡ 〈a−kak〉BCS = u∗kvk =
ck

1 + |ck|2
(4)

The Fourier transform of Fk, F (r) (≡ 〈ψ̂(0)ψ̂(r)〉BCS) plays the role of the wave function
of the Cooper pairs.

In standard BCS (“mean-field”) theory, one minimizes the sum of the kinetic energy
〈T 〉 =

∑
k(εk − µ)〈nk〉 and the “pairing” part of the potential energy

〈Vpair〉 =
∑
kk′

Vkk′〈a†ka
†
−ka−k′ak′〉

(
Vkk′ ≡ 〈k, −k|V |k′, −k′〉

)
(5)

By making the“mean-field” ansatz (which for the “truncated” potential energy given by
eqn. (5) can be shown to be exact in the thermodynamic limit) < a+

k a
+
−ka−k′ , ak′ >=

< a+
k a

+
−k > · < a−k′ak′ >≡ F ∗kFk′

Then the pair wavefunction Fk satisfies the Schrödinger-like equation:

2EkFk = −
∑
k′

Vkk′Fk′ (6)

with

Ek ≡
|εk − µ|

(1− 4|Fk|2)1/2
≡ Ek[Fk] (7)

which is a disguised form of the BCS gap equation:

∆k = −
∑

k′ Vkk′∆k′/2Ek′

Ek =
√

(εk − µ)2 + |∆k|2
(8)
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Note that the gap equation refers to the Cooper pairs (condensate). However, in the
spatially uniform case Ek ≡

√
(εk − µ)2 + |∆k|2 also represents the energy of excitation of

single quasiparticle of momentum k: in the PNC formalism

Ψ0 =
∏
k>0

(
uk|00〉k + vk|11〉k

)
≡
∏
k>0

Φ
(0)
k (9)

Ψk0 =
∏
k 6=k0

Φ
(0)
k · |01〉k0 (or . . . |10〉k0) (10)

where |01〉k means the state with k empty and −k occupied, etc.

In 2D, a possible p-wave solution of gap equation is

Fk = (kx + iky)f(|k|)
(
≡ (px + ipy)f(|p|), hence “p+ ip”

)
(11)

then also ∆k = (kx + iky)g(|k|), Ek = h(|k|) (k̂−indep.) 6= 0, ∀k.
It is important to note that the energetics is determined principally by the form of Fk

close to Fermi energy (|εk − µ| . ∆0 ←≡ |∆k|k=kF
). But for TQC applications, we may

need to know Fk very far from the Fermi surface (k → 0 and/or k → ∞). Note that in
most real-life cases, (3He−A and Sr2RuO4) we have

∆0 � µ (“BCS limit”) (12)

but this need not be true a priori, and in fact it seems likely that the case ∆o ∼ µ will
be realized in the not too distant future in an ultracold alkali Fermi gas having a p-wave
resonance. We will discuss the (p+ ip) Fermi superfluid in detail in lecture 28.

Bogoliubov-de Gennes (BdG) equations

In the simple spatially uniform case, a simple relation exists between the “completely
paired” state of 2N particles and the (2N+1)-particle states (“quasiparticle excitations”)–
the BCS wavefunction is product of states (k,−k), the excitations involve breaking single
pair as in eqn. (10). In the general case no such simple relationship exists: nevertheless,
the BdG equations enable us to relate (2N + 1)-particle states to (2N)-particle GS. (They
do not tell us directly about the (2N)-particle GS itself). The standard (PNC) approach
goes as follows: The exact Hamiltonian is

Ĥ − µN̂ =

∫
drψ†(r)

(
− ~2

2m
∇2 + U(r)− µ

)
+

∫∫
drdr′ψ†(r)ψ†(r′)V (r − r′)ψ(r′)ψ(r)

(13)
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where U(r) is the single-particle potential. In PE term, we make the generalized mean-field
approximation:

ψ†(r′)ψ†(r)V (r − r′)ψ(r′)ψ(r)→ ∆(r, r′)ψ†(r′)ψ†(r) +H.C. (14)

where

∆(r, r′) ≡
∫
V (r − r′)〈ψ(r′)ψ(r)〉 (= c-number) (15)

So:

Ĥ − µN̂ =

∫
drψ̂†(r)Ĥ0ψ̂(r) +

{∫∫
drdr′∆(r, r′)ψ̂†(r)ψ̂†(r′) + H.c.

}
(16)

which is a bilinear form and can be diagonalized
In this (PNC) formalism, the GS is a superposition of even-N states. Similarly, the

excitations are superpositions of odd-N states and are generated by operators of the form
(operating on the GS)

γ†n =

∫
dr
{
un(r)ψ†(r) + vn(r)ψ(r)

}
(17)

with (positive) energies En (so Ĥ − µN̂ =
∑
n

Enγ
†
nγn + const.)

To obtain the eigenvalues En and eigenfunctions un(r), vn(r) of the MF Hamiltonian,
we need to solve the equation

[Ĥ − µN̂, γ†n] = Enγ
†
n (18)

Explicitly, this gives the BdG equations

Ĥ0un(r) +

∫
∆(r, r′)vn(r′)dr′ = Enun(r) (23a)

∫
∆∗(r, r′)un(r′)dr′ − Ĥ∗0vn(r) = Envn(r) (23b)

(
Ĥ0 ≡ − ~2

2m∇
2 + U(r)− µ

)
‡

General properties of solutions of BdG equations:

1. For En 6= En′ , the spinors
(un(r)
vn(r)

)
are mutually orthogonal, i.e., we can take

(un, un′) + (vn, vn′) = δnn′
(
(f, g) ≡

∫
f∗(r)g(r) dr

)
(24)

‡Note that in absence of magnetic vector potential, Ĥ∗0 = Ĥ0.
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2. If
(
u
v

)
is a solution with energy En, then

(
v∗

−u∗
)

is a solution with energy −En. For
En 6= 0 the negative-energy solutions are conventionally taken to describe the “filled
Fermi sea.”

3. Under special circumstances, it may be possible to find a solution corresponding to
En = 0 and un(r) = v∗n(r). In this case

γ̂n ≡
∫
dr{u∗n(r)ψ̂(r) + v∗n(r)ψ̂†(r)} (25)

=

∫
dr{vn(r)ψ̂(r) + un(r)ψ̂†(r)} ≡ γ̂†n

i.e., the “particle” is its own antiparticle! Such a situation is said to describe a
Majorana fermion (MF). (Note: this can only happen when the paired fermions have
parallel spin, otherwise particle and antiparticle would differ by their spin. This is
why superconductors with spin singlet pairing cannot sustain Majorana fermions.)

The above conclusions prima facie rely heavily on the BdG equations, which in turn
rest on the assumption of “spontaneously broken U(1) gauge symmetry”. So we now
need to raise the question: Can we do without this assumption?

The answer turns out to be yes. Recall the result for a translationally invariant
system in simple BCS theory: (up to normalization), for even N , PC → ΨN =[∑

k cka
†
ka
†
−k

]N/2
|vac〉. If we select the pair of states (k,−k), this can be written

ΨN = Ψ̃
(k)
N |00〉k + ckΨ̃

(k)
N−k|11〉k (26)

where

Ψ̃
(k)
N ≡

∑
k′ 6=k

ck′a
†
k′a
†
−k′

N/2

|vac〉

or with normalization

ΨN = u∗kC
†Ψ̃

(k)
N−z|00〉k + v∗kΨ̃

(k)
N−k|11〉k (|uk|2 + |vk|2 = 1)

where

C† ≡ N

∑
k′ 6=k

cka
†
k′a
†
−k′


turns the normalized state Ψ

(k)
N−1 into the normalized state Ψ

(k)
N .
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Now consider the N + 1-particle states (odd total particle number). A simple ansatz
for such a state is the (normalized) state

|N + 1 : k〉 = Ψ̃
(k)
N |10〉k (or Ψ̃

(k)
N |01〉k) (27)

This is obtained from the expression (26) by the prescription

|N + 1 : k〉 =
(
uka

†
k + vka−kC

†
)

ΨN ≡ α̂†kΨN (28)

Unsurprisingly, this state turns out to be an energy eigenstate with energy (relative to
E0(N) + µ) of Ek ≡

√
(εk − µ)2 + |∆k|2 Note that one can form another expression

of this type, namely
β̂†k ≡ v

∗a†k − u
∗
ka−kC

† (29)

such that β̂†kΨN ≡ 0

i.e., β̂†k is a pure annihilator. An arbitrary operator of the form λa†k + µa−k can be

expressed as a linear combination of α̂†k and β̂†k. For each 4-D Hilbert space (k,−k)
there are 2 quasiparticle creation operators and 2 pure annihilators.

Generalization to non-translationally-invariant case

Let’s assume, for the moment, that the even-N groundstate is perfectly paired, i.e.,
that

ΨN (≡ |N : 0〉) = N
[∫∫

drdr′K(rr′)ψ†(r)ψ†(r′)

]
(30)

where K(r′) is some antisymmetric function. Then there exists a theorem4 that we
can always find an orthonormal set {m, m} such that ΨN can be written

Ψn = N ·

(∑
m

cma
†
ma
†
m

)N/2
|vac〉 (i.e. (m,m′) = (m,m′) = δmm′ , (m,m′) = 0)

(31)
We could now proceed by analogy with the translation-invariant case by constructing

the quantity Ψ̃
(m)
N ≡

(∑
m′ 6=m cma

†
m′a
†
m′

)N/2
|vac〉, etc. Then if we define cm =

vm/um as in that case, the operators β̂†m ≡ v∗ma
†
m − u∗mam are pure annihilators (as

of course are any linear combinations of them). However, in general, in contrast

4See e.g., Yang, RMP 34, 694 (1962) lemma in Appendix A.
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with the translation-invariant case, states of the form |N1 : m〉 = Ψ̃
(m)
N |01〉m are not

energy eigenstates. The true N + 1-particle energy eigenstates are superpositions:

|N + 1 : En〉 =
∑
m

qm(En)|N + 1 : Em〉+ (m→ m)∑
m

|qm(En)|2 + (m→ m) = 1
(32)

Equivalently, we can write

|N + 1 : En〉 =

{∑
m

(ũma
†
m + ṽmamC

†) + (m→ m)

}
|ΨN 〉 (33)

≡
∫ [

u(r)ψ† + v(r)ψ(r)C†
]
|ΨN 〉 (ũm ≡ qmum, ṽm ≡ qmvm)

which (apart from the PC factor C†) is exactly the form postulated in the BdG
approach. The functions u(r) and v(r) are now determined by solving the BdG
equations exactly as in the standard approach. But note we never had to relax
particle conservation!

Nature of “Majorana Fermions”

In the standard approach, the BdG equations are equivalent to the statement that
[ĤBdG, γ

†
n] |ΨN 〉 = Enγ

†
n|ΨN 〉. For En > 0 the interpretation is unambiguous:

γ†n|ΨN 〉 is anN+1-particle energy eigenstate with energy (µ+)En (“Dirac-Bogoliubov
fermion”). But we know that if (u, v) is a solution with En > 0, then (v∗, −u∗) is
a solution with energy eigenvalue −En. These negative energy solutions are usually
interpreted in terms of the “filled Dirac sea.”

However, the above equation is entirely compatible with the statement that γ†n|ΨN 〉 ≡
0! Hence, in the present PC approach, we interpret the “negative energy” γ†n’s as
pure annihilators. There must be exactly as many pure annihilators as there are DB
fermion states. Suppose there exists a DB fermion with E = 0, and wavefunction
(u, v) satisfying the BdG equations. The corresponding pure annihilator β†0 auto-

matically satisfies them, also with E = 0 (indeed any E!). Then let α†0 create the

E = 0 DB fermion, and consider γ†0 = eiπ/4(α†0 + iβ†0). The wavefunction (u, v) corre-

sponding to γ†0|ΨN 〉 obviously satisfies the BdG equations with E = 0, and moreover
satisfies u(r) = v∗(r). Hence it conforms exactly to the definition of a “Majorana

fermion.” A second MF is generated by eiπ/4(α†0 − iβ
†
0).

Conclusion: In the PC representation, a “Majorana fermion” is nothing but a quan-
tum superposition of a real “Dirac-Bogoliubov” fermion (N+1)-particle energy eigen-
state) and a pure annihilator.
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Consider in particular the case where α†0 = α†1 +iα†2 with 1 and 2 referring to spatially
distant positions. Then the two MF’s will each be localized, at 1 and 2 respectively.
Or putting it the other way around: any pair of (localized) MF solutions can be
combined to give a (delocalized, “split”) DB fermion. This of course raises the
question: Can we be sure that there will always be an even number of MF solutions?
The answer turns out to be yes, although the general proof is not trivial. In simple
cases such as the Kitaev quantum wire the statement can be explicity verified, see
below.

Illustration: An (ultra-)toy model

Consider N (=even) spinless fermions that can occupy (a) a “bath” of states that
need not be specified in detail, or (b) two specific states 0, 1 (“system”). We use a
notational convention such that whenever the number of particles in the “system”
changes by +2(−2), the operator C(C† is applied to the bath so as to conserve
particle number. Then the effect of the bath is to supply to the effective (BdG-type)
Hamiltonian of the system a term of the form

∆a†0a
†
1 + H.c. (34)

There will also be in general a “tunnelling” term, of the form

ta†0a1 + H.c. (35)

and a term of the form U0a0a0 + U1a
†
1a1, which we will set = 0. Let’s make the

special choice
∆ = it (36)

and measure energies in units of t. Then

ĤBdG = (a†1a0 − ia†1a
†
0) + H.c. (37)

The GS is easily found to be

ψ0 =
1√
2

(1 + ia†1a
†
0)|vac〉 (38)

or more accurately

ψ0 =
1√
2

(1 + ia†1a
†
0 Ĉ)|vac〉 (39)

where |vac〉 ≡ (no particles in system, N in bath).

Consider now the linear combinations of the operators a†0, a
†
1, a0, a1 : The operators

Ω̂1 ≡
1√
2

(a†1 − ia0), Ω̂2 ≡
1√
2

(a†0 − ia1) (40)
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are pure annihlators. The operator∏̂
1
≡ 1

2
(a†1 + ia0 − a†0 + ia1) (41)

when acting on ψ0 creates the “+” state ψ+ = 1√
2
(a†1 + a†0)|vac〉 with energy 1 and

the operator ∏̂
2
≡ 1

2
(a†1 + ia0 − a†0 + ia1) (42)

creates the “−” state ψ− = 1√
2
(a†1 − a

†
0)|vac〉 The ψ− state has zero energy relative

to the GS.
The 2 MF’s are linear combinations of the pure annihilators and the zero-energy DB
fermion state ψ−:

M̂0 ≡ −
∏̂
−

+ Ω̂1 + Ω̂2 = a†0 − ia0 (43)

M̂1 ≡ +
∏̂
−

+ Ω̂1 + Ω̂2 = a†1 − ia1 (44)

In this ultra-toy model, the effects of the MF’s is not particularly spectacular, because
the question of spatial localization does not arise.

... so let’s go on:

A slightly less trivial model: The Kitaev 1D quantum wire

Consider a linear array of n sites (the “system”) coupled to a large superfluid “bath”,
so that there are N(� n) particles in total. In the mean-field approximation the
most general Hamiltonian of a system of spinless electrons has the form, for nearest-
neighbour coupling only.

Ĥ =
n−1∑
j=0

Uja
†
jaj −

n−1∑
j=1

(tja
†
j−1aj +H.c.) +

n−1∑
j=1

(∆ja
†
j−1a

†
jĈ +H.c.) (45)

Eqn. ( 45 ) may be viewed as the nearest we can get to a 1D version of the (p+ ip)
mean-field Hamiltonian. Let us make the very special choice.

Uj = 0,∆j = −itj ←≡ −iXj , Xj > 0 (46)

Then the Hamiltonian becomes

Ĥ =
n−1∑
j=1

XjK̂j (47)
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where
K̂j ≡ (a†j−1 + iaj−1)(aj + ia†j) (48)

Note the absence of a K̂0 term.

Note:

(a) K̂j is Hermitian

(b) K̂2
j = 1

(c) The K̂j ’s are mutually commuting

(d)
∏n−1
j=0 K̂j = number parity

Properties (a) - (c), with the Hamiltonian (47), imply that the ground state must
satisfy the conditions

K̂j |ψ0〉 = |ψ0〉, j = 1, 2, ..., n− 1 (49)

E0 = −
n−1∑
j=1

Xj (50)

The explicit form of GSWF is

|ψ0〉 = N ·
n−1∏
j=1

(1 + K̂j)|vac〉 (51)

e.g. for n = 4,

|ψ0〉 = N · {1 + i(a†0a
†
1 + a†1a

†
2 + a†2a

†
3 − a0 −† a†2 − a

†
1a
†
3 + a†0a†3(×Ĉ) (52)

−a†0a
†
1a
†
2a
†
3(×Ĉ2)}|vac〉 (53)

Notice that the term a+
0 a3 produces entanglement between the sites 0 and 3, despite

the fact that there is no direct interaction between them. This state of affairs is very
characteristic of topologically interesting superfluid states.

Note: The GSWF of the whole “universe” (system + bath) can be written in the

form Ψ0 = (Λ̂ + Ĉ)N/2 where Λ̂ ≡
∑n/2

l=1 clα
†
lα
†
l̄

(α†l ≡
∑

j qlja
†
j) but it is not entirely
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trivial to determine the constants5 cl and qlj .

Excited states From the 2n a†j and aj it must be possible to form n DB fermion
creation operators and n pure annihilators. If we assume that for j 6= 0 the “link” j
is associated with one DB creator Π̂j and one annihilator Ω̂j , then we must have

[K̂j , Π̂j ] = +Π̂j , (and [K̂j , Π̂j′ ] = 0 forj 6= j′) (56)

This is satisfied by the operator

Π̂j =
1

2
[(a†j−1 + iaj−1) + (a†j − iaj)] (57)

Hence, Π̂j creates a DB fermion with energy (relative to the GS) Xj . The corre-

sponding annihilator is Ω̂j ≡ 1
2 [(a†j−1 + iaj−1)− (a†j − iaj)]

However, we are still missing one DB creation operator and one pure annihilator.
Clearly these have to be associated with the “missing” link (n − 1) − 0. In fact,
consider

Π̂0 ≡
1

2
[(a†n−1 + ian−1) + (a†0 − ia0)] (58)

This may be verified explicitly to create an (N + 1)-particle energy eigenstate which
is degenerate with the groundstate. The corresponding pure annihilator is

Ω̂0 ≡
1

2
[(a†n−1 + ian−1)− (a†0 − ia0)] (59)

If now we consider the operators

M̂0 ≡
1√
2

(Π̂0 + Ω̂) =
1√
2

(a†n−1 + ian−1) (60)

M̂n ≡
1√
2

(Π̂0 + Ω̂)) =
1√
2

(a†0 + ia0) (61)

these generate Majorana fermions localized on sites n− 1 and 0 separately.

5For n = 4 the solution is

α†1 =
1

2

3∑
j=0

eijπ/4α†
j̄
, α†1 =

1

2

3∑
j=0

e−ijπ/4α†, α†2 =
1

2

3∑
j=0

e3ijπ/4α†j , (54)

α†
2̄
=

1

2

3∑
j=0

e3ijπ/4α†, c1 = i(1−
√
2), c2 = i(1 +

√
2) (55)
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Fig. 1

An intuitive way of generating MF’s in the Kitaev quantum wire is the following:
Start with the wire bent into a loop and with all Xj ’s nonzero, so that the sum in
eqn. (50) now includes j = 0.

At this point we have a set of n DB fermions, one associated with each link and
created by the operator Π̂j . Now imagine gradually turning down one particular Xj ,
say Xo; when Xo →, the link between the sites 0 and n− 1 is “broken”, i.e. nothing
depends on the state of this link. Given that, we can now physically break the link
and unbend the ring into a linear wire. But what has happened to the operator Π̂o,
which created an excitation (an extra fermion) on this link? It must have been “split”
into the two terms a+

n−1 + ian−1 and a+
o − iao which are localized at the two ends

of the wire; when combined with the corresponding pure annihilators these generate
E = 0 solutions of the BdG equations, i.e. Majorana fermions, which are localized
at the ends.

THE SEARCH FOR MAJORANA FERMIONS:

“INDUCED” P-WAVE SUPERCONDUCTIVITY

While (p + ip) Fermi superfluids are believed to tolerate MF’s on their boundaries
and vortices, there is a problem: the only currently realized bulk (p + ip) Fermi
superfluids are

(a) 3He− A (difficult / impossible to prepare in 2D form)

(b) Sr2RuO4 (Majoranas believed to occur on half-quantum vortices, but no obvious
“control parameter”).
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So: do Majoranas occur elsewhere?

Kane + Fu 2008: s-wave superconductor with vortex on top of TI (topological insu-
lator)

Sau et al, Alicea (2010): s-wave superconductor with vortex on top of semiconducting
nanowire with strong spin-orbit coupling.

Lutchyn et al., Oreg et al., (2010): no vortex needed in s-wave superconductor!

Possible design:

Fig. 2

The general principle6:

1. In semiconductor, strong Rashba spin-orbit coupling

ĤR = ασypx (62)

dominates at small p, orients spin ⊥’r to p.⇒
2. Magnetic field B ⊥’r σ opens gap Ez = gµBB at crossing point:

Hybridized states are “s-p mixed”, i.e.

ϕ+ (k) =

(
A↑(k)

A↓(k) · kx + iky

)
, ϕ− (k) =

(
B↑(k) · kx + iky

B↓(k)

)
(63)

6Alicea, PRB 81, 125318 (2010)
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Fig. 3

Fig. 4

(3) Introduce pair field from s-wave superconductor:

ĤSC =

∫
∆(r)ψ†↑(r)ψ†↓(r) + H.c.

=

∫
dk{∆±(k)ψ†+(k)ψ†−(k) + ∆−−(k)ψ†−(k)ψ†−(−k)

+ ∆++(k)ψ†+(k)ψ†+(−k)}
∆+−(k) = f(|k|) (boring)

∆−−(k) = g(|k|)(k̂x + ik̂y) induced p-wave!

(4) Now tune µ (chemical potential) to lie in gap and assume ∆� Ez: then the band
drops out and we get pure p-wave superconductivity in lower band! (∼= generalized
Kitaev quantum wire.)
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Fig. 5

Prediction for Majoranas (Lutchyn et al., Oreg et al.):
critical quantity is

C0 ≡ µ2 + ∆2
0 − E2

z (64)

which can be made x− dependent. For C0 > 0 we are in “trivial” phase, for C0 < O
in “topological” phase. Majoranas are predicted to form at the boundary (if any)
between the trivial and topological phases.

(Additional prediction is dependence of current through nanowire on phase drop in
superconductor across wire: 4π periodicity → periodicity in flux is h

e ).

EVIDENCE FOR MAJORANA FERMIONS IN SEMICONDUC-
TOR/SUPERCONDUCTOR NANOWIRE STRUCTURES:

(Mourik et al., Science 336, 1003 (2012)

Expt. arrangement (schematic):

Existence of topological phase requires

Ez > (∆2 + µ2)1/2 (65)

Majoranas predicted to sit at the two points where

E2
z = ∆2 + µ2 (66)

Expt. probes only the one at the N end.
Raw data: ∂I/∂V as f(B, Vg,∆, ...). Crucial observation:

very stable ZBP in ∂I/∂V at V=0
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Fig. 6

unmovable by large changes in B, Vg, ... requires nonzero ∆,
vanishes when direction of B along (← spin-orbit field) ......
⇒ Majorana?


