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Localization I: General considerations, one-parameter scal-
ing

Traditionally, two mechanisms for localization of electron states in solids:

(a) Mott mechanism, interactions: believed to work even in pure crystalline lattice:
many-electron effect. Typically sets in abruptly (first order phase transition)

(b) Anderson mechanism, disorder, believed to exist even in absence of interactions.
Typically sets in smoothly (second order phase transition in 3D)

In real life, both effects may be simultaneously present, and more generally there is
an important question about effects of interactions on mechanism (b) [cf. L. 7]. Here
will discuss only (b), for noninteracting electron system. We will consider T = 0 until
further notice.

Preliminaries

Random walk in d dimensions. Consider first a simple drunkard’s walk: At each step
the drunkard takes one step along each axis, positive or negative at random (and un-
correlated). Consider motion along one (z−) axis. After an (even) number N of steps,
the probability of being back at z = 0 is 2−NN !/[(N/2)!]2 ≈ (2/π)1/2N−1/2. So in
d dimensions the probability of returning to the origin after N steps is approximately
(2/π)d/2N−d/2. Hence, average number of returns to the origin made (say) between N
and 2N steps is ∼ N−1/2 in 3D, constant in 2D and ∼ N1/2 in 1D. I.e. in 1D or 2D, but
not in 3D, “return to the origin” is virtually certain if we wait long enough.

This result is not confined to the special model: Generally, for a model of classical
diffusion in d dimensions starting from a δ-function distribution, the probability density
P (0, t) at the origin after time t is proportional to (Dt)−d/2 (D = diffusion coefficient),
so the quantity

∫∞
0 P (0, t) dt is infinite in 1 or 2D (but finite in 3D).

However, in classical diffusion the average probability of being at the origin in the
limit of infinite time, that is limT→∞ T

−1 ∫ T
0 P (0, t) dt, is zero for all d, i.e. there is no

localization (but the above remark is still important, cf. below). In QM things are rather
different . . .

A rather more general result follows from a consideration (á la Landauer) of a suc-
cession of partially reflecting barriers in 1D (Imry, §5.3.1).

In general, if we have in series two barriers with reflectances R1, R2 and transmit-
tances T1, T2, then the overall reflectances and transmittances R12, T12 are given by

T12 =
T1T2

1 +R1R2 − 2
√
R1R2 cos θ

(1)

R12 = 1− T12 (2)

and so
R12

T12
=
R1 +R2 − 2

√
R1R2 cos θ

T1T2
(3)
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where the angle θ is given (L. 3) by 2φ + arg(r2r
′
1) where φ is the phase difference

accumulated between 1 and 2 and r2, r
′
1 the appropriate (complex) reflection coefficients.

The result (3) is exact.
Suppose now that we naively average over the “random” quantity cos θ. Then on

average we will have (
R12

T12

)
=
R1 +R2

T1T2
≡ R1 +R2

(1−R1)(1−R2)
(4)

Now it is clear that for any given barrier the quantity R/T is some measure of the
resistance (inverse conductance) associated with the barrier: indeed, in the Landauer
approach we have exactly for resistance ≡ G−1, (provided Lin � distance between the
barriers!)

G−1 =
π~
e2

(
R

T

)
(5)

If now we add the resistances of the two junctions 1 and 2, we find

(G−1)add =
π~
e2

(
R1

T1
+
R2

T2

)
=
π~
e2

R1 +R2 − 2R1R2

(1−R1)(1−R2)
(6)

On the other hand (4) gives

(G−1)tot =
π~
e2

R1 +R2

(1−R1)(1−R2)
> (G−1)add (7)

In other words, when averaged in this way the total resistance due to two barriers is
greater that the resistances of each separately!

Suppose now we have a whole series of barriers in series. However small the R of
each, eventually, n becomes large enough that the total Rn is ∼ 1. Now suppose we add
one more barrier of reflectance R � 1. Neglecting the R in the denominator, we find
from (4) (

Rn+1

Tn+1

)
=
Rn +R

Tn
(8)

or in terms of the dimensionless resistance g−1 ≡ G−1/π~
e2

,

g−1n+1 = g−1n +R/Tn (9)

or since T−1n = g−1n + 1,

dg−1n
dn

= R(g−1n + 1) (10)

so that the dimensionless resistance increases linearly while it is . 1 but thereafter
exponentially, indicating localization.

Actually the above result is a bit too naive, in fact one should average not g−1n itself
but rather ln(1 + g−1n ) (see Imry, p. 102). The result is that one finds

〈ln(1 + g−1n )〉 = p1n (11)
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where p1 is the dimensionless resistance (R/T ) for a single barrier. To the extent that
one can identify 〈ln g−1〉 with ln〈g−1〉, the above result is recovered.

? PP “pair” exception

Classical (Drude) conductivity: Dimensional considerations.

Reduce the true d-dimensional quantum transport problem to a Boltzmann equation, in
which any effects of interference between scattering by different impurities is neglected.
If cross-section for a single impurity is σimp, introduce mean free path l ≡ 1/nimpσimp;
this is then only length scale in problem (other than kF

−1, cf. below).
For a degenerate Fermi system the Drude expression for the conductivity σ is

σDr = ne2τ/m (∼ e2

~
kF

2l in 3D) (12)

Useful to introduce conductance G of a specified (e.g. hypercubic) shape of linear di-
mension L. Note that the dimensions G are I/V = QT−1/EQ−1 ∼ Q2/ET ∼ e2/~,
so useful to introduce dimensionless conductance g(L) ≡ G(L)/(e2/~) (nb. e2/~ ≈
2.5 · 10−4 Ω−1(S)). In Drude theory we have

g(L) = σDrL
d−2/(e2/~) (13)

Note that in 2D, where σDr = nae
2τ/m, we have na = kF

2/2π for two spin species, so
since τ = l/vF = lm/~kF we have σDr = (e2/2π~)(kFl) or

g2DDr =
1

2π
kFl also g1DDr =

1

π

l

L
(14)

We will see that, crudely speaking, the criterion for localization effects to be important
is g(L) . 1. In 3D, since gDr(L) ∼ L, if this criterion is not met at short distances it is
unlikely to be met at larger ones. In 1D (g ∼ L−1) however, even the Drude conductance
satisfies the criterion for sufficiently large L. In 2D it is not immediately clear what is
going to happen.

Note that in Drude theory the quantity τ , and thus the conductance, almost invari-
ably decreases with increasing temperature. In particular, for a textbook (3D) metal
the standard formula at low T (� θD) is

τ−1 ∝ A + BT 2 + CT 5

static imps el-el phonons
(15)

Note that the sense of “3D” metal for this formula to hold may be much weaker than
the one used below (i.e. (15) may hold even for metals which are 2 or 1D from the
localization point of view).
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Weak localization - the basic physical idea.

Let’s assume that the single-particle Hamiltonian is closed (e.g. no phonons, no el-el
interaction . . . ) and invariant under time reversal (this is crucial). Then consider those
paths which start and finish at some point (arbitrary chosen as origin). Classically, the
probability of returning to the origin is just the sum of the probabilities of propagating
along each path separately. In QM, on the other hand, the amplitude of return is the
sum of amplitudes to do so by different paths (and the total return probability is the
square of the total amplitude), so we may get interference effects. In fact,

O

Ptot = |Atot|2 =
∣∣∑

i

Ai
∣∣2 =

∑
i

Pi + 2 Re
∑
ij

A∗iAj (16)

For a couple of randomly selected paths i, j there is no special
phase relation between Ai and Aj , so the cross-term averages to
zero. However, for pairs of time-reversed states as shown, Ai =
Aj in the absence of T-violating effects and thus the summed
(interference) term contributes equally to the first. Thus the
total return probability is exactly twice its classical value and the conductivity σ (and
conductance G or g) is less than its classical value. Since the classical probability of
return is higher in 2D than in 3D (and even more in 1D) one might expect intuitively the
the weak-localization effect should be stronger in 2D and even more in 1D. Moreover,
the probability of return should be larger for smaller diffusivity, i.e. larger resistivity.

Scaling theory: The Thouless argument. (Nb: Lin →∞!)

Imagine combining large blocks of side L to make super-blocks. Will the single electron
states tend to localize within the original blocks, or will they extend over the super-
blocks? According to Thouless, this depends on the ratio of two energies, δW and ∆E.
δW is simply the level spacing within the original block and is of order (N0L

d)−1) where
N0 is the single-electron DoS. ∆E is essentially defined as the “sensitivity of a typical
energy level to the boundary conditions” (e.g. antiperiodic vs. periodic) but may be
more useful to think of it as an effective “hopping matrix element” from one block to
the next. In that case it should be of order ~/τ(L) where τ(L) is the time taken to
traverse the block. If the motion on scale L is diffusive (true if L� l, elastic mean free
path) than for any dimension τ(L) ∼ L2/D, so the “Thouless energy” ∆E is ∼ ~D/L2.
Thouless argued that when ∆E � δW , the states would be extended whereas when
∆E � δW , they should be localized within a single block (cf. the impurity problem
with 〈V 2〉1/2 � t). More generally, the rate at which the conductance changes as a
function of L should depend, apart from dimensionality and L itself, only on the ratio
∆E/δW . Now according to the above, we have

∆E/δW ∼ (~D/L2)/(N0L
d)−1 = ~DN0L

d−2 (17)



PHYS598PTD A.J.Leggett 2013 Lecture 4 Localization I: General considerations 5

But N0 is of the order1 of the static “neutral compressibility” χ0, and Dχ0 is simply e−2

times the electrical conductivity σ. Moreover, the conductance G(L) is (independently
of Drude theory, provided σ is implicitly a function of L) just σLd−2. Hence

∆E/δW (L) ∼ (~/e2)σLd−2 ≡ G(L)/(e2/~) ≡ g(L) (18)

Thus, apart for a factor ∼ 1, the Thouless ratio is simply the dimensionless conductance!

One-parameter scaling.

It is convenient at this point to introduce the quantity

β(g) ≡ d(ln g)/d(lnL) (19)

and moreover to redefine (for subsequent convenience) the quantity G(L) to be the
conductance of a hypercube (block) of side πL rather than L (clearly this does not affect
the above order-of-magnitude estimates). Then the one-parameter scaling hypothesis is,
following Thouless, that for given spatial dimension d,

β(g) =
function of g

only
(20)

What do we know about the dependence of β(g) on g? Suppose, first, that in a
given system we know that as L → ∞ we iterate to the Drude form, i.e. g(L) ∼ σLd−2

where σ is independent of L. Then from the explicit definition of β(g) above we have
β(g) = d− 2 in this limit. On the other hand, if the electron states in a block of side ∼
L are localized on a scale of some length ξ, then we expect that g(L) ∼ Ld−2 exp−L/ξ,
and so within logarithmic accuracy β(ξ) = −L/ξ = − ln(g0/g) (< 0), where g0 is the
dimensionless conductance at scale ξ. (The exact result is β(g) = (d − 2) − ln g0/g).
We expect this result to be generic in the limit g → 0 (g � 1). We will furthermore
see below (lecture 5) that for large g (“weak localization” limit) the form of the scaling
function is (with the above choice of definition for G(L)) simply

β(g) = (d− 2)− α/g (21)

where α = 1/π2 for any dimension g.
Quite generally, by the Thouless argument, one would expect that the β-function

has the form

β(g) ≡ d ln g

d lnL
= (d− 2) + fL(g) (22)

where the “localization” correction fL(g) is always negative (or at best zero). Hence,
in 1D, the conductance tends to zero with increasing L faster than the Drude result
(g ∝ L−1), in agreement with what we found by the Landauer approach for a strictly 1D
system. On the basis of the above argument, we should expect that when L reaches a

1This relation might fail e.g. very close to a CDW transition.
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value ξ such that g(ξ) ∼ ε (where ε is some number . 1), then localization should set in
so that for L� ξ we have g(L) ∼ exp−L/ξ. To estimate ξ we simply approximate g by
its Drude form (thereby obtaining an upper limit); since gDr(l) = l/(πL), it immediately
follows that ξ ∼ l, i.e. for a 1D system the localization length is just of the order of the
elastic mean free path.

In 2D we see that β(g) is again always < 0, and hence we expect g to decrease with
L and eventually reach a point where localization will set in. However, if we insert the
weak-localization form (21) for g the decrease is very slow (g ∼ g0 − lnL/l). Since in
this result g0 is g(l), which again we approximate by its Drude value kFl, the resulting
estimate for ξ is exponentially large:

ξ2D ∼ l exp(const kFl) (23)

(where a more detailed consideration shows that the constant is π/2). Nevertheless, it is
always finite, so we reach the generic conclusion that in the one-parameter scaling theory
all electron states are localized in 2D.2 This conclusion may be seen to be insensitive
to the details of the behavior of the scaling function β(g), provided that the latter is
bounded above by some negative constant.

In conclusion, it should be emphasized that by its nature the one-parameter scaling
argument assumes

(a) that the electrons are completely noninteracting (not only with one another but
with phonons, etc.) and

(b) that there are no characteristic lengths in the problem larger than the elastic mean
free path l (other than the localization length ξ itself).

2But, even if states localized, finite σ at finite T , because of variable range hopping.


