Problem Sheet 5

- 1. Carry out the analog of the Laughlin-Halperin argument of lecture 17 for a state with $\nu = 2/5$. What implicit assumptions are being made?
- 2. (\cong Jain problem 5.) Referring to 1.19, eqn. (1.), show that *provided* the magnetic length in the exponential factor is appropriately adjusted, the disk area covered by Ψ_{ν} is the same as that covered by Φ_{ν} *. (hint: Consider the highest power of z_i occurring.)
- 3. (a) For a phonon of frequency $\omega = 10 \text{ GHz}$ propagating in a 2DEG of overall density 10^{11}cm^{-2} in GaAs, which of the following is a good approximation? (q = wave vector of phonon, v_{F} = Fermi velocity of electrons, $l \equiv v_{\text{F}}\tau$ = electron elastic mean free path)
 - i. $\omega \tau \gg 1$
 - ii. $ql \gg 1$
 - iii. $qv_{\rm F} \gg \omega$
 - (b) Show, by solving the collisionless Boltzmann question in the approximation ω = 0, or otherwise, that when the conditions (ii)-(iii) are fulfilled the transverse conductivity of a free degenerate 2D Fermi gas is given by

$$\sigma(q,\omega) = \text{const.} (e^2/\hbar)(k_{\rm F}/q)$$

What is the constant?

(c) Under the conditions of part (a), is the result of part (b) still approximately true in a field of 0.1 T?

Solutions due by 9 a.m. on Mon. Nov 11.