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Physics in Two Dimensions 

 

Motivation: 

1) Many specific 2D systems of interest, e.g. cuprates, graphene, helium films, Sr2RuO4-ySi 
MOSFETS…, ultracold atomic gases… 

2) (almost) unique theatre for realization of TQC. 
3) Forces us to rethink just about everything we took for granted in 3D, from scratch 

Draft plan of course (note degree of flexibility, at end)    omissions (magnetism…) 

Textbooks       handouts 

*Assessment 

 

Meaning of 2D: 

 In a many-body system, many characteristic lengths: 

 Atomic dimension  ~3Å  or, in e  gas  1 ~ 1Fk  Å  (but may be considerably larger 

e.g. in GaAs heterostructures) 

 Thermal dB wavelength,  1/2
~ /DB Bh mk T �  (or ~ / Bhc k T  for phonons) 

 Elastic mfp  
 Inelastic mfp (can be ~ )   

 correlation length 

 

 

A given system may be “2D” in one context and “3D” in another. (example: a metal film of thickness 

 ~ 100d Å   at 1 K is thoroughly 2D from the point of view of the phonons  ~ 600DB Å  but still 3D 

from the point of view of the electrons.) 

(note on correlation length) 

A further complication: in many cases of interest, we have a 3D matrix containing many 2D planes (e.g. 
organics, cuprates…). Then an important quantity is the degree of coupling between the planes, both due 
to tunneling and due to (Coulomb) interactions. (Note that even when a system is entirely 2D in all other 
respects (e.g. graphene), the C.1. propagates in the (3D) vacuum and hence its (unscreened) 3D form is 

always prop. 
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 Generally speaking, it is a necessary (and often sufficient) condition to regard a given 
experimental system as “effectively 2D” if at temperature T that 

(a) Bk T   en. of all nontrivial excitations ’r plane (i.e. DBd  ) 
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(b) (in case of multilayers) Bk T  interplane coupling. 

↑: “interplane coupling” ambiguous! E.g. in case of cuprates, usually B ck T t (single-particle. 

interplane hopping matrix element), ⇒	in formulating microscopic theory, can take to be “2D”: on the 

other hand, for a macroscopic system, Bk T   total interplane coupling ⇒ for calculating degree of LRO, 

etc., must take as 3D (more in lecture 15).  
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 (2D magnetic systems) 

Some peculiarities of 2D (vis-à-vis 3D) 

(1) Bending energies in d dimensions:  
 
(a) consider KE in single-particle QM: If we try to contain the (normalized) Schrödinger wave 

function over a distance L, then the KE is  2 22~ ~d dL L   which since

2 2~ 1 is ~ .dL L   On the other hand, if the (attractive) potential is restricted to a region ≪L 

then V  L–d . Hence in 1D it is always advantageous to let L   , whereas in 3D it is not: 2D 
is “marginal” so it is not immediately clear what will happen. (See lecture 3.)  
 
(b) Similarly, if one has an order parameter with continuous symmetry which must be “healed”, 
e.g. from a prescribed value (e.g. 0) at the origin to its bulk value at  , the bending energy is 

now 2
2~d dL L   (note the OP is not normalized!) On the other hand, any bulk energy 

associated with breaking of the continuous symmetry (e.g. in a Bloch wall in a ferromagnetic 
insulator, the crystalline anisotropy)  Ld. Hence in 3D advantageous to shrink the domain wall 
to a point, whereas in 1D it has finite width. Again, 2D is marginal…  
 

(2) (a somewhat related point): In the theory of 2nd order phase transitions, one would like to introduce 
a “symmetry-breaking field” ࣢, and then take the limit V→ then ࣢→0. What exactly does this 
mean? We want to take the limit in such a way that the energy associated with the SB field, M࣢ 

where M≡N is the total magnetization,, is BTk  but the single-spin energy 0  , the 

minimum collective excitation energy of the system (if this is not so, the extended field is in some 

sense no longer a “small” perturbation). Since for a continuously broken symmetry 0  typically  

 2
mink   2L , while N  dL , these requirements imply 

    2 do o LL     

This condition is automatically satisfied in 3D by taking (say)    5/2 ,  L L . It clearly 

cannot be satisfied in the same way in 2D (or 2d  ). This point is related to theorems about the 

absence of LRO in 2d  , see lecture 4. More generally, fluctuations tend to be much more 
important in 2D than in 3D. 
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(3) Random walks: we will explain this topic in detail in lecture 4, but note for now that in 2D (or of 

course in 1D) a RW returns infinitely many times to the origin, whereas in 3D the probability of 

return  0 as t  . This has profound implications for the theory of localization. 
 

(4) The Coulomb interaction: as noted above, the (virtual) EM field is always 3D, so in real space the 

CI  r-1 irrespective of d. However, the F.T. is  q1–d (for d > 1). As a result, the energy of a 

charge oscillation (plasmon), which is   1/22 ( ) , q V q   const. for 0q   in 3D but in 2D 
1/2q   and thus 0.  A related point is that there is no analogy of the (uniform) dielectric constant 

 for a 2D system: in fact, the screening 0  as 0q   (see lecture 15). 

 
(5) Scattering processes for degenerate fermions: this is quite a tricky point. Consider a pair of 

fermions scattering at T=0 in the presence of the Fermi sea. Suppose they have (small) total 
momentum P relative to the Fermi sea and (small) total energy E relative to 2EF. In both 2 and 
3D, conservation of energy means that the available phase space (outside the Fermi sea) ;E∝  

where combined with the DOS for initially exciting the 2nd particle, this gives the standard result 
that the total scattering probability of a single electron of energy  relative to the Fermion surface 

2. What about conservation of momentum? In 3D this does not introduce any other critical 
factor, because there is a “cone” of momentum-conserving final states available, obtained by 
rotating the initial states around the total momentum vector. In 2D things are quite different: as P 
→ 0 the scattering becomes restricted to the forward direction. 
 

(6) The “strong-coupling” condition: in many MB systems we find that Ǝ a correlation (“healing”) 
length ξ which is proportional to n-1/2 where n is the (d-dimensional) density. Generally speaking, 
the o–of–m criterion for some kind of mean field approach to be valid is that the number of 

particles in a vol. whose side is ξ is ≫ 1, i.e. n	ξd	≫ 1. Thus for 3D the condition is c.n–1/2 ≫	1, 

i.e. the low-density limit, while in 1D it is c′n1/2 ≫	1, i.e. the high-density limit.. 	For d=2 the 
criterion to be in the mean-field limit is independent of density at least to logarithmic accuracy. 
 

(7) However, perhaps the most important difference of all between 2D and 3D (or 1D) lies in the 
effects of topology: this is really what makes 2D unique. 

     Imagine a particle morning in a d-dimensional space, with the origin excluded. In 1D the situation is 
trivial; if the particle starts on the R of the origin it stays there forever, and vice versa. In d ൒	3,	imagine	
an	arbitrary	closed	trajectory	which	avoids	the	origin;	such	a	trajectory	can	explain	arbitrary	
regions	of	the	space	before	returning	to	its	starting	point.	However,	any	such	trajectory	can	be	
continuously	constricted	to	a	point,	and	so	any	transformation	induced	by	it	must	be	
“homotopically	equivalent”	to	the	identity.	ሺThus,	for	example,	the	orbital	Schrödinger	wave	
function	must	be	single‐valued.ሻ	

					An	important	application	is	to	the	interchange	of	two	identical	particles:	We	know	that	this	

cannot	affect	the	probable	density,	so	we	immediately	know	that    1 2 2 1; exp ;  , i  r r r r 	

real.	However,	two	interchanges	with	the	same	“sense”	are	equivalent	ሺup	to	an	irrelevant	
translation	of	the	COMሻ	to	taking	one	particle	completely	around	the	other,	and	by	the	above	
argument,	in	d ൒	3	dimensions	the	result	of	this	must	be	the	identity.	Hence	it	immediately	follows	
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that	in	3	ሺor	moreሻ	dimensions	ൌ0	or		ሺmod.	2ሻ,	giving	the	standard	Bose	or	Fermi	statistics.	
ሺThe	association	of	these	with	integral	and	half‐integral	spin	respectively	requires	further	
ሺnontrivial!ሻ	argumentሻ.	

					In	2D	the	above	argument	does	not	work,	because	it	is	impossible	ሺwhile	continuing	to	exclude	
the	originሻ	to	shrink	the	loop	trajectory	to	a	point.		Hence	in	principle	ሺif	we	know	nothing	about	
the	nature	of	the	“particles”	in	questionሻ	the	“exchange	phase”		can	be	any	real	number.	Of	course,	
if	the	“particles”	are	real	electrons	or	atoms	we	know	that	they	“really”	live	in	3D	space	and	hence	
must	obey	B/F	statistics	even	when	physically	confined	ሺe.g.	by	low	Tሻ	to	a	plane;	but	there	may	be	
more	exotic	composite	objects	which	can	only	be	defined	within	the	plane,	and	these	can	have	a	
priori,	any	value	of	.	Such	objects	were	originally	envisaged	by	Leinaas	&	Myrheim	in	1977,	and	
were	subsequently	christened	“anyons”	by	Wilczek.	

					Generally	speaking,	we	will	find	that	the	nontrivial	effects	of	topology	in	2D	are	strongly	
enhanced,	in	the	case	of	charged	particles	such	as	electrons,	by	a	magnetic	field	’r	to	the	plane	of	
motion.	The	reason	is	that,	in	any	d,	in	a	nonzero	magnetic	field	ሺand	zero	E	ሻ,	and	in	the	absence	of	
complicating	band‐structure	effects*,	the	projection	of	the	semiclassical	orbit	of	an	electron	ሺetc.ሻ	
on	a	plane	’r	to	the	field	is	always	closed.	Since	in	the	2D	case	this	is	the	only	plane	available	for	
the	motion,	the	orbit	itself	is	automatically	closed,	which	is	just	the	state	of	affairs	which	is	liable	to	
activate	“anyonic”	effects.	

	

	

	

	

ሾAdvise	to	brush	up	elementary	chemistry,	particularly	of	C	compoundsሿ 

                                                      
* Which can produce “open” orbits. 


