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The Berezinskii-Kosterlitz-Thouless transition

In the last lecture we saw that true long-range order is impossible in 2D and a fortiori
in 1D at any finite temperature for a system where the order parameter is a complex
scalar object1; the reason is simply that long-wavelength phase fluctuations destroy the
phase correlation at long distances.

However, this does not prevent 1D and 2D systems behaving, under some circum-
stances, very much “as if” they possess long-range order. In the following, I will illus-
trate this point with the specific example of a neutral superfluid (e.g. 4He), where the
consequences of (pseudo-) LRO are particularly dramatic, but qualitatively similar con-
siderations apply to other systems described by a complex scalar order parameter, such
as the 2D XY model of magnetism (“2D” in the sense that the spins are constrained to
lie in a plane), or crystalline order.

In the standard theory of bulk (3D) superfluidity in a neutral system such as 4He, one
defines the order parameter Ψ(r, t) as follows: Quite generally, for an arbitrary many-
body system, one can define the one-body density matrix ρ(r, r′, t) and find a basis
χi(r, t) of single-particle states (which are not necessary energy eigenstates) in which it
is diagonal, so that in this basis

ρ(r, r′, t) =
∑
i

ni(t)χi(r, t)χ
∗
i (r
′, t) (1)

The system is said to be Bose condensed if one and only one of the eigenvalues (“occu-
pation numbers”) ni(t) is “macroscopic”, i.e. of order of the total number of particles
N , while the rest are all “microscopic” (of order 1). If now we denote the single macro-
scopic eigenvalueN0(t) and the corresponding eigenfunction χ0(r, t), the order parameter
is simply defined by the prescription

Ψ(r, t) ≡
√
N0(t)χ0(r, t) (2)

Contrary to an impression given in some of the literature, this definition (which nowhere
invokes the idea of “broken U(1) symmetry” or anything of that kind) is perfectly satis-
factory for all purposes for which the concept of order parameter has been (legitimately)
used.

The superfluid velocity vs(r, t) is defined in terms of the order parameter as follows:
we write

Ψ(r, t) ≡ A(r, t) exp iφ(r, t) (A, φ both real) (3)

and define2

vs(r, t) ≡ (~/m)∇φ(r, t) (4)

1or more generally whenever the symmetry which is broken by the existence of the order parameter
is continuous (and the order parameter is not “pinned”, e.g. by random static fields in the magnetic
case).

2We note that if at some point χ0(r, t) and hence Ψ(r, t) is zero, the phase φ(r, t) and hence the
superfluid velocity vs(r, t) is undefined.
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From this definition follows at once the irrotationality condition

curl vs(r, t) ≡ 0 (5)

and the Onsager-Feynman quantization condition∮
vs · dl = nh/m (n = 0,±1...) (6)

provided the closed circuit in the integral is taken entirely through regions where Ψ(r, t)
is nonzero. It is clear in particular that if we take a bulk (3D) annular geometry and
assume that Ψ(r) is indeed nonzero everywhere in the annulus, then the number n
(the “winding number”) which appears in the Onsager-Feynman relation is a topological
invariant: it is the number of turns in the Argand plane made by the phase of Ψ (or
equivalently of χ0 as we go once around the annulus, and this number cannot change
so long as |Ψ| remains everywhere finite (“hula-hoop” analogy). Consequently, provided
the system is sufficiently strongly stabilized against fluctuations of |Ψ|, a state in which
n 6= 0 can be highly metastable.

In the standard theory of (bulk) superfluidity, one considers a general configuration
of the order parameter Ψ(r) (hence of the superfluid velocity vs(r) and assumes that
thermal equilibrium has been achieved subject to the topological constraints implied by
the Onsager-Feynman quantization condition. For the moment we will assume that the
equilibrium is with walls which are at rest in the lab frame. Under these conditions it is
still in general possible to have a finite mass current j(r) flowing in the system and we
define the superfluid density ρs(T ) by the relation3

j(r) = ρs(T )vs(r). (7)

In the case of liquid 4He, ρs(T ) can be measured by various experimental techniques; it is
found to tend to zero as T → Tc and to unity as T → 0 (something which is theoretically
expected but surprisingly difficult to prove rigorously, see e.g. AJL, J. Stat. Phys. 93,
927 (1998)). Along with the current, a finite value of vs(r) produces a “flow” (kinetic)
term in the total energy, which under the stated conditions is

Eflow =
1

2

∫
ρsv

2
s(r)dr (8)

It is useful at this stage to make contact with the Ginzburg-Landau formalism used
in lectures 8 and 9. We recall that in that formalism the expression for the “bending
energy” of the order parameter Ψ(r) was

Fbend = γ(T )|∇Ψ(r)|2 (9)

If we consider a situation where the amplitude of the order parameter is constant at its
equilibrium value Ψ0(T ) while the phase φ(r) is spatially varying eqn. (9) becomes

Fflow = γ(T )|Ψ0(T )|2|∇φ(r)|2 (10)

3Strictly speaking, we should write js(r) =
∫
ρs(r, r′)vs(r′)dr′, but the range of the function

ρs(r, r′) = ρs(r− r′) is so short that it can usually be safely approximated by ρsδ(r− r′).
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Comparing (10) with eqn. (8) and using (4), we find

ρs(T ) =
2m2

~2
γ(T )|Ψ0(T )|2 (11)

(For a superconductor, vs is defined as (~/2m)∇φ(r), so we must make the same re-
placement (m → 2m) in (11)). From now on it will be generally more convenient to
formulate the theory in terms of ρs(T ).

These considerations can be generalized to the case where the “normal component”
(the non-superfluid part of the liquid) is not in equilibrium with stationary walls but
rather in internal equilibrium and moving with a mean velocity vn(r). Then the total
current is

j(r) = ρs(T )vs(r) + ρn(T )vn(r) (12)

and the kinetic energy is

Eflow =

∫
1

2
(ρsv

2
s(r) + ρnv

2
n(r))dr (13)

An alternative and possibly more useful way of looking at it is that viewed from the
frame in which the normal component is locally at rest, the (local) KE density due to
the superfluid has the form

Eflow =
1

2
ρs(vs − vn)2 (14)

It is useful to note two kinds of topological singularities which can occur in a bulk (3D)
superfluid: vortex lines and vortex rings. A (single)4 vortex line is a configuration in
which there exists a line (in the simplest case straight, so that we can take its locus to
be x = y = 0) such that the order parameter Ψ(r) vanishes on the line and its phase is
just the phase of x ± iy, so that it rotates once in the Argand plane as we go around
the line in the physical xy-plane. Thus, according to the Feynman-Onsager relation, the
“winding number” with respect to the line x = y = 0 is ±1. Formally,

Ψ(r) = f(r⊥)(x± iy)/r⊥, r⊥ ≡
√
x2 + y2 (15)

where f(r⊥) is a function which is constant for sufficiently large r⊥ but falls off to zero
for r⊥ → 0. We will define the (order of magnitude of the) distance at which f(r⊥)
recovers its uniform value as r0 (the “core radius”); generally speaking it follows from
a more microscopic consideration that r0 is of the order of an atomic spacing, but close
to Tc it is expected to diverge with the correlation (healing) length ξ(T ). The energy
per unit length of such a vortex is (apart from a small “core” term) just the energy of
the uniform system plus the flow energy 1

2

∫
ρsv

2
s(r)dr: this is easily calculated, since

|vs| ≡ (~/m)|∇φ| = ~/mr

Ev.l.

L
=

1

2
ρs(T )(~/m)2

∫ R

τ0

2πr

r2
= πρs(T )

~2

m2
ln(R/r0)

≡ (ρs(T )/4π)(h/m)2 ln(R/r0) (16)

4Multiply quantized lines are unstable.
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where R is an upper cutoff of the order of the cell dimensions, so that line energy of a
vortex line diverges as R → ∞. In the literature the “quantum of circulation” h/m is
often denoted κ.

A second 3D configuration which is of interest is a vortex ring, which can be vi-
sualized approximately as a vortex line bent around into a circle; the radius R0 of the
circle can be arbitrary provided it is � r0. It is clear that at large distances (� R0) the
contribution to vs(r) from opposite sides of the ring will tend to cancel, leaving a term
of order R0/r

2 and associated KE ∼ r−4; thus the total flow energy associated with the
ring must be finite. In fact, it is not difficult to see that the ring radius R effectively
acts as an upper cutoff, replacing the cell dimension. Thus the total energy of the ring
must on essentially dimensional grounds be of the form

Ev.r.(R0) ∼ const. R0 ln(R0/r0)× h2/m2 (17)

where we do not need for present purposes to calculate the constant. For the 2D system
such as 4He films in which we are interested, both vortex lines and vortex rings reduce to
a simple excitation, we shall call simply a vortex, in which Ψ is constant in the direction
perpendicular to the film and as a function of the in-plane coordinate r⊥ is given by
(15), i.e. it is just a cross-section of a 3D vortex line. Evidently the total energy of such
a vortex is just given by the film thickness d multiplied by eqn. (16).

An interesting property of both vortex lines and vortex rings is their interaction with
a possible uniform background flow of the superfluid. Suppose that this background flow
is (in the lab frame) in the positive x-direction, and we consider a vortex line whose
polarity is such that the flow is in the positive x-direction for positive y and vice versa.
Then it is clear that the flow energy in
the lab frame will be reduced if the vortex
moves to the right. This effect is easily
calculated5 quantitatively, and we find for
the appropriate energy per unit length

(Ev.1./L)(y) = −(ρs(T )(h/m)v0s)y (18)

where v0s is the magnitude of the back-
ground flow. Note that this energy does
not depend explicitly on the cutoff. The derivative of this energy with respect to y is
the famous Magnus force, which is usually written in vector notation in the form

F = ρs(T )(v0
s × κ) (19)

where κ ≡ (h/m)ẑ, ẑ being a unit vector along the direction of the line, with the
“corkscrew sense” of the rotation. These considerations of course apply equally to vor-
tices in a 2D film. In the case of a vortex ring, it is intuitively obvious that (for the
right polarity) the Magnus force arising from a given segment of the line tends to move

5E.g. by putting the system in a slab geometry infinite in the z-direction and using method of images
to take account of the boundary conditions.
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the segment outwards, so that the net tendency is to expand the ring. Again, it is not
difficult to calculate effect quantitatively, with the simple result

E(vs) = ±ρsvsκπR2 (20)

Lets now turn to the application of these ideas to (quasi)-1D and 2D systems. In the
following, we will assume that we can define, for the 3D “bulk” geometry, a standard
GL free energy functional which is adequate to describe fluctuations on a length scale
larger than the (extrapolated) zero-temperature correlation length ξ0, which we take6 to
have its “default” value of ∼ an interatomic spacing a (not the temperature-dependent
healing length ξ(T ) ∼ (T −Tc)−1/2). We moreover define the bulk 3D superfluid density
ρs(T ) as previously, and recall that it is related to the parameters of GL theory by

ρs(T ) = 2(m/~)2γ(T )|∇Ψ0(T )|2 (21)

so that the expression for the energy due to superfluid flow (the phase-gradient term) is
(cf. above)

Eflow =
1

2
ρs(T )(~/m)2

∫
|∇φ(r)|2dr (22)

We consider the small fluctuations of the phase around its (arbitrary) mean-field
value φ0, writing (independently of dimensionality)

φ(r) = φ0 + Ω−1/2
∑
k

φke
ik·r (23)

Then according to the considerations of lecture 9, we have for thermal expectation value

〈φkφ−k〉 = kBT/[ρs(T )(~/m)2k2] ∼ 1/k2λ2T (24)

(where in the last estimate we suppose ρs ∼ ρ : λT is the thermal de Broglie wavelength).
The phase correlations in position space are given (up to a constant of order unity) by

〈[φ(r)− φ(0)]2〉 =
Ω−1

λT

∑
k

sin2 1
2k · r
k2

(25)

as previously obtained, where Ω is the (hyper) volume of the system. So far, everything
is independent of the precise geometry of the system.

Before embarking on our main topic, the effect of fluctuations and vorticity in thin
2D films, let us first briefly look at some related quantities in a formally 1D (annular)
geometry. We can distinguish two limiting cases: In the case when the thickness of the
annulus is sufficiently large it follows from eqn. (25) that the effects of fluctuations are
negligible (i.e. the system is effectively 3-dimensional) and the magnitude of the order
parameter may be roughly approximated by its mean-field value Ψ0(T ) [Problem]. Under

6This estimate is correct for 4He. For Fermi superfluids (3He and superconductors), ξ0 is usually
larger, and this needs to be taken into account in some formulae below.
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these conditions the superfluid velocity vs and thus the winding number n = κ−1
∮
vs ·dl

are unambiguously defined, and it then follows from topological considerations that
states with |n| 6= 0 are strongly metastable.7 The exception is very close to Tc, where
a non-zero decay rate is observable; this is believed to be due to the “Langer-Fisher”
mechanism,8, in which a vortex ring is created and expands in the superfluid flow.

In the present context a more interesting case is that in which the thickness is so
small that the 1D correlation length is considerably less than the circumference of the
annulus, so that there is no long-range order in the usual sense. (This would in practice
require very stringent experimental conditions, see Problem). Despite this, however, it is
intuitively clear that we can still define a local order parameter Ψ(r) (though this would
obviously require some generalization of eqn. (2)), and that under most circumstances
the thermal expectation value of |Ψ(r)|2 should not be very different from its value in the
bulk 3D superfluid at the temperature in question. Moreover, while the absolute phase of
Ψ(r) is under these conditions strongly fluctuating, the relative phase at points differing
by |r − r′| � ξ1D, where ξ1D is the 1D correlation length, should still be well-defined,
and hence one can still define the superfluid velocity by the standard prescription

vs(r) =
~
m
∇φ(r) (26)

Moreover, the requirement that the phase of the order parameter (condensate wave
function) should return to itself mod. 2π when we circumnavigate the annulus still leads
to the Onsager-Feynman quantization condition∮

vs · dl = nκ (κ ≡ h/m) (27)

The crucial point, now, is that to change the “winding number” n would require, just as
in a bulk 3D case possessing genuine long-range order, depression of the order parameter
locally to zero. For an annulus sufficiently thin to be in this “1D” limit the relevant
process is probably not the nucleation and growth of a vortex ring à la Langer-Fisher,
but a simple process (“phase slip”) in which Ψ(r) goes uniformly to zero across a cross-
section of the annulus; however, at low enough temperatures this process, like the Langer-
Fisher one, will be exponentially suppressed by the Gibbs-Arrhenius factor. Hence
under appropriate conditions states of nonzero superflow can be metastable even in the
absence of LRO. The long-wavelength fluctuations which destroy the LRO are completely
irrelevant to this argument (“slinky” analogy). However, one thing worth noting (with
an eye to the 2D case) is that the free energy barrier which enters in Gibbs-Arrhenius
factor tends to zero with the cross-sectional area A of the annulus, so that in the truly
1D limit (A → 0), at any nonzero temperature, phase slips always become infinitely
frequent and completely destroy metastable superflow.

7It should be strongly emphasized that this result holds only for a complex scalar order parameter,
such as is realized in 4He or the classic superconductors. For a more complicated order parameter the
situation is more interesting, see Ho, PRL 49, 1837 (1982).

8PRL 19, 560 (1967).
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We can now turn to the case of our primary interest, quasi-2D thin films. The
considerations below apply to any 2D phase transition for which the order parameter
is a complex scalar object, including the XY model, superconductivity, CDW’s (in
so far as the band structure is sufficiently close to 1D to allow those to exist) and
even the formation of a crystalline lattice; however, for definiteness I shall explicitly
discuss, as above, the case of neutral superfluid such as 4He (a system which has in fact
played a major role in experimental tests of the theory). It should be emphasized that
(most of) the considerations below (like those above on the 1D ring) do not apply to
an order parameter which has either a less complicated structure than a complex scalar
(e.g. the Ising model of ferromagnetism) or a more complicated one (e.g. Heisenberg
ferromagnetism). The case of superconductivity involves a special complication due to
the long range of the Ampère force, which will be discussed in lecture 11; however, at
the end of the day it turns out that for a sufficiently thin films it can be handled in a
way exactly analogous to that of a neutral superfluid.

We first return briefly to our previous considerations concerning small phase fluctu-
ations around the mean-field equilibrium. Recall once more that the general expression
of the (complex scalar) order parameter Ψ(r) arising from phase fluctuations is (remem-
bering that ρs = 2γ(T )|Ψ0|2)

〈Ψ(0)Ψ∗(r)〉 = exp−Q(r)

Q(r) ≡ 2kBT

(2π)dρs(~/m)2

∫ kc

0
ddk

sin2 1
2k · r
k2

(28)

where kc is an upper cutoff, provisionally taken as ∼ ξ−10 . A little thought shows that
in 2D the integral has (for kcr � 1) the value π ln kcr− const. Hence, we find that the
order parameter correlations decay according to a power law:

〈Ψ(0)Ψ∗(r)〉 ∼ r−η(T ) (29)

where the exponent η(T ) is given by

η(T ) ≡ kBT/(2πρs(T )(~/m)2) (30)

We need not be too concerned about the prefactor of r−η, which depends on exactly
how the upper cutoff is treated.

Eqn. (30) has an interesting consequence. We recall that the “susceptibility” (in the
case of superfluidity, this is the response to a fictitious field which breaks U(1) symmetry)
is proportional to the space integral of the correlator 〈Ψ(0)Ψ∗(r)〉. We see that in 2D
this is infinite or finite according as η(T ) is less than or greater than 2. Hence, we expect
a subtle change in the behavior of the system at the temperature such that

ρs(T ) =
1

4π

[m
~

]2
kBT (31)

(note that here ρs(T ) is the (mean-field) superfluid density per unit area, so the dimen-
sions are right). We shall see, however, that before this point is reached something quite
different happens.
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In fact, small fluctuations of the phase are by no means the whole story. As we have
seen, in 2D, for a complex scalar order parameter (symmetry group U(1)) there also
exist topological excitations, namely vortices. We already calculated above the energy
per unit length of a vortex line in a 3D system, and it is immediately clear that we can
generalize this result to a 2D system:

Ev = πρ0s(T )(~/m)2(ln(R/r0)− const.) (32)

Here ρ0s(T ) is the (mean-field) superfluid (mass) density per unit area, r0 is a short-
distance cutoff corresponding roughly to the “size” of the vortex core (which we expect
to be of the order of the GL healing length ξ(T )), R is a measure of the linear dimensions
of the cell and the constant depends on the shape of the cell (and precise definition of
R).

Consider now the free energy associated with the formation of a vortex. This is the
energy Ev minus TSv, where Sv ≡ kB lnWv and Wv is the number of possible different
ways of creating the vortex. It is clear that the order of magnitude of Wv (which does
not need to be precisely defined for present purposes) is R2/r′20 , where r′0 is of the order
of r0. Hence we have

Sv = 2kB ln(R/r0)− const. (33)

and the total free energy Fv is

Fv ≡ Ev − TSv =

{
πρ0s(T )

(m/~)2
− 2kBT

}
ln(R/r0)− const. (34)

In the thermodynamic limit (R/r0 →∞) the constant can be neglected, and we see that
Fv changes sign at a characteristic temperature T0 given by the formula9

kBT0 =
π

2

[
~
m

]2
ρ0s(T0) (35)

Note that T0 is (trivially) below the mean-field transition temperature Tc where ρ0s van-
ishes. However, it is clear that for a 2D system (film) of thickness d � λT (where
λT is the de Broglie wavelength at Tc) T0 clearly approaches Tc. In fact, if we make
an order-of-magnitude estimate of ρ0s(T ) by the GL-type formula ρ0s(T ) ∼ ερ2D where
ε ≡ 1− T/Tc, we find that the value ε0 of ε corresponding to T0 is of order

ε0 ∼
(
a

λT

)3(λT
d

)
∼ λT

d
(36)

(since typically λT ∼ a , the inter-particle spacing). Hence for films more than a few
atoms thick T0 is very close to Tc, and to see the effects associated with the former
clearly we need to use rather thin films.

9Note that the value of ρs defined by this equation is 8 times that defined by the disappearance of
infinite susceptibility (see above) so the latter point is never reached.
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What is the significance of T0 (often denoted TKT in the literature)? Within the
naive “single-vortex” calculation given, we expect that for T < T0 the density of vortices
should be zero in the thermodynamic limit, while for T > T0 there should a large number
(proportional to some power of R) present. Intuitively, we should expect the presence
of this large number of vortices not only to destroy any LRO in the technical sense that
has survived the effect of small phase fluctuations, but more importantly to destroy the
whole concept of a topologically constructed winding number and thus the phenomenon
of persistent currents (superfluidity). However, the above naive calculation, while it
actually turns out (subject to one provision, see below) to give the correct answer for
the temperature T0 of this “topological” transition, is not adequate quantitatively, inter
alia because it neglects the effects of vortex-vortex interactions. The classic theory of
the topological transition, which takes these interactions fully into account, was given
by Kosterlitz and Thouless,10 and in the rest of this lecture and the next I will describe
it.

A first and essential step in the KT theory is to obtain the energy of interaction
of a pair of vortices. This requires quite careful definition. If we simply add the flow
energies corresponding to the two vortices separately, then as we have seen we get
2AlnR/r0, where R is the cell dimension and r0 the size of the vortex “core”; for our
case the constant A is πρs(T )(~/m)2. The energy of interaction between the vortices
comes from the cross-terms in the kinetic energy of flow: if the cores of vortices 1 and 2
are located at r1 and r2 respectively then we have

Eint = ρ0s(T )

∫
d2r vs1(r) · vs2(r) = ±ρ0s(T )(~/m)2

∫
d2r

(ẑ × (r− r1))(ẑ × (r− r2))

|r− r1|2|r− r2|2
(37)

where ± signs refer respectively to parallel and antiparallel orientation. After a little
calculation using various trigonometric identities, we find that if we choose the origin so
that the vortices are centered at ±r12/2 (so that their distance apart is r12) the integral
reduces to the expression

2π

∫ R

0

r dr

r2 + (r12/2)2
≈ 2π ln(R/r12)− const. (38)

Thus, the mutual interaction energy is

Eint = ±2A ln(R/r12)(−const) (39)

If we assume that the total “vorticity” in the sample (i.e. the number of +n vortices
minus the number of n ones) is zero, than the terms proportional to lnR will cancel,
and if we define the “charge” on a single vortex to be ±q where q ≡

√
A, then we write

the total energy of a system of vortices in the form

E =
1

2

∑
ij

U(rij) (40)

10J. Phys. C 6, 1181 (1973).
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where11

U(rij) = −2qiqj ln(rij/r0) + 2µ for rij > r0, and U(rij) = 0 for rij < r0 (41)

which is the form usually used in the literature. The “chemical potential” term 2µ
is necessary because it takes a finite energy to create a pair of antiparallel vortices at
rij = r0, because (inter alia) of the necessity to force the amplitude of the order parameter
to zero (something not taken into account in the above calculation). Note that in our
case the magnitude of the “charge” q on a single vortex is

|q| = (~/m)
√
πρ0s(T ) (42)

and so depends on temperature. It is important to note that in this formula ρ0s(T ) is
the “mean-field” superfluid density (and thus vanishes when T → Tc0, the mean-field
transition temperature); as we shall see, this is not in fact a directly measurable quantity.

A very useful aid to one’s intuition is that the form (41) of the interaction energy
is exactly that of the so-called “2D Coulomb gas” (a 2D plasma of +n and −n electric
charges interacting by the Coulomb potential, e2 ln rij , which would be obtained from
the exchange of photons strictly confined to the plane); although this model has probably
no simple physical realization, it is a favorite subject of study for many-body theorists.
(Hence, of course, the name “charge” for the qi’s). We will exploit this analogy in the
next lecture.

11Strictly speaking we should write E = 1
2

∑
ij(−2qiqj ln rij/r0) +

∑
i µ.


