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Experimental tests of the BKT theory

Since it may be a bit difficult to see the wood for the trees, let’s start by reviewing the
main predictions of the BKT theory which might be put to experimental test. First,
the qualitative picture: The energy of a vortex in a 2D film of dimension R diverges as
lnR/r0, so at low temperatures there are no free vortices. Vortex-antivortex pairs, which
have a finite energy, can occur, but are unable to nucleate decay of the dc supercurrent
in the limit vs → 0, so the system is superfluid. At a characteristic temperature TKT

the vortex-antivortex pairs become unbound (their radius tends to ∞) so for T > TKT

we have many free vortices, which can move across the supercurrent and destroy it;
thus the system is normal (non-superfluid). A complication is that even below TKT the
bound pairs can contribute to decay of the supercurrent for either nonzero vs or nonzero
frequency ω.

Let’s try to be a bit more quantitative. First, as to the static properties: For T < TKT

the correlation of the order parameter,

C(|r− r′|) ≡ 〈ψ∗(r)ψ(r′)〉 (1)

falls off algebraically in the limit |r− r′| → ∞:

C(r) = const. r−η(T ) (2)

where η(T ) is proportional to T and tends to the value 1/4 as T → TKT from below.
This behavior is due to the effect of small fluctuations around equilibrium: for r� ξ−
vortices do not contribute. The important physical effect in this regime is the screening
of the interaction of a given vortex-antivortex pair at points r, r′ by the polarization of
other vortex-antivortex pairs lying between them; we can define an “effective” superfluid
density ρs(|r−r′|) as proportional to the screened interaction, and in the electromagnetic
analogy this is then proportional to 1/ε(|r − r′|) (ε(|r − r′|) → ε(r) from now on). The
effective superfluid density starts off, at a scale ∼ the vortex radius r0, at the GL value
ρ0
s(T ); the effect of screening is to renormalize it downwards, so that it approaches the

experimentally measured value ρs(T ) at r → ∞. The characteristic scale at which the
crossover from ρ0

s(T ) to ρs(T ) takes place, ξ−, has the temperature-dependence

ξ−(T ) =∼ r0 exp(b|t|)−1/2, t ≡ T − TKT (< 0) (3)

(where b is a nonuniversal constant), and thus diverges very fast as T → TKT from below.
In this limit the experimentally measured (dc) superfluid density ρs(T ) is predicted to
satisfy the universal relation

ρs(T → T
(−)
KT ) =

2

π

(m
~

)2
kBTKT (4)

For T > TKT the effective superfluid density again starts off, at scale r0, at the GL
value (which for T less than the mean-field transition temperature at which α(T )→ 0 is
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still nonzero), but now scales to 0 as r →∞, the transition taking place over a distance
of order ξ+(T ) given by

ξ+(T ) ∼ r0 exp(b′t)−1/2 (5)

As a result (Problem) the order parameter correlation C(r) ≡ 〈ψ∗(0)ψ(r)〉 falls off
algebraically for r � ξ+(T ), but at longer length scales falls off exponentially :

C(r) ∼ exp−cr/ξ+(T ) r →∞ (c ∼ 1) (6)

Turning to the consequences for the dynamics, we see that for T > TKT the situation
is straightforward: free vortices exist, and for arbitrary small vs can move across the
supercurrent and annihilate it. Since the Magnus force is proportional to vs, this gives
rise to a linear damping. However, the density of unpaired vortices is proportional to
ξ−2

+ (T ), so one predicts that the linear friction coefficient (or in the case of a charged
system the linear resistance R) should satisfy the relation

R(T ) ∼ ξ−2
+ ∼ exp−2b′t−1/2 (7)

For T < TKT the situation is more complicated and needs to be analyzed as in lecture
11: the upshot is that (−dvs/dt) ∝ v3

s in the dc case and for the ac case the effective
value of the “dielectric constant” ε(ω) is complex and given by eqns. (11.28); thus it can
be calculated from an explicit solution of the Kosterlitz equations (11.14).

In reviewing experimental tests done to date of the predictions of BKT theory, it
has to be borne in mind that any particular experimental system will generally only
allow tests of a subset of the above predictions; indeed, as far as I know no system
currently exists which will permit tests of all the static and dynamic behavior predicted.
As we shall see, He films allow measurements only of the finite-frequency “dielectric
constant” ε(ω) (or equivalently the finite-frequency superfluid density); superconducting
films, and also arrays of Josephson junctions, have permitted us to verify the predictions
concerning the dc behavior of the resistivity, including the nonlinear aspects; while
to obtain information on the correlations of the order parameter itself one needs to
use alkali-gas Bose condensates. As we shall see each of those systems involves some
complications with respect to the pristine BKT model.

One particular complication of which one should be aware is the possible effect of
any normal component which may be present. That such normal component, even if
present at relatively low level, may have highly nontrivial effects, possibly not accounted
for in the “pure” BKT theory, is suggested by the puzzling data obtained on 3He-4He
mixtures (see below); in these mixtures the “normal fraction” as defined in the standard
2-fluid model may be somewhat greater than the actual concentration of 3He by number,
but seems very unlikely to be more than ∼ 25%: In general, we would expect to be able
to neglect the normal component if TKT is less than say 0.5 of the mean-field (3D)
transition transition temperature Tco; this condition turns out to be well fulfilled for
Josephson junction arrays and Bose alkali gases, but is more marginal for (pure) 4He
films and probably not at all well fulfilled for thin metallic films.
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The most systematic attempt to test the dynamic KT theory is that of Bishop and
Reppy1 on 4He films. They used the Andronikashvili technique, with a torsional oscillator
of rotational frequency 2.5 KHz and a Q of > 105; they claimed to be able to resolve the
effective moment of inertia (which does not include that of the “superfluid fraction” of
the helium film, see below) to 5 parts in 109. The oscillator was wrapped with Mylar
which gave a very large surface (∼ 0.2 m2) for absorption of helium. The (average)
coverage by the helium ranged from zero to ∼ 36µmol/m2, corresponding roughly to
0 to 2 atomic layers.2 For this type of experiment, it is straightforward to show that
the shift ∆P in the oscillator period relative to the “normal” state where all the helium
moves with the substrate, and the dissipation Q−1, are related to the complex “dielectric
constant” we calculated by

∆P/P =
1

2
(A/M)ρs(T

−
c )Re ε−1(ω, T ) (8)

Q−1 = (A/M)ρs(T
−
c )Im

[
− ε−1(ω, T )

]
(9)

where M is the (unloaded) oscillator mass, A the area of coverage and ρs(T
−
c ) is the

“macroscopic” value of the superfluid mass per unit area on the low side of the transition.
In formulae (8,9) the “dielectric constant” (renormalization of the superfluid density)
ε(ω, T ) is evaluated at the (fixed) frequency ω of the oscillator and at temperature T ; as
indicated in lecture 11, it can be related to the dc value of ε(r) at that temperature. Of
course, in real life Q−1 is likely to have a background contribution (due to dissipation
in the normal component, friction in the bearings etc.).

BR found that for coverages of pure 4He less than ∼ 25µmol/m2 (rather more than 1
monolayer) there was no temperature at which ∆P/P underwent any appreciable change,
indicating that such films do not become “superfluid” down to T = 0 (presumably
because they are “solid”). For higher coverages they found a relatively abrupt change
(rise) in ∆P/P at a temperature which scaled linearly with the “excess” coverage with
a maximum value of about 1.25 K at the maximum coverage of 36µmol/m2; note that
this is very considerably below the Tc of bulk liquid He (∼ 2.17 K), so that it is probably
not a bad approximation to take the “mean-field” ρs (ρ0

s) to be essentially given by its
zero-T value ρ and thus to be independent of temperature. The naive estimate of TKT

(which makes it proportional to ρ0
s not ρs) then gives a linear dependence of TKT on the

areal coverage, with a predicted slope of ∼ 3.3× 10−9 gm/cm2K; the experimental value
is ∼ 3.5× 10−9 gm/cm2K.

BR then studied the behavior of ∆P/P and Q−1 near TKT in detail as a function of
T , and fitted it to formulae derived from the dynamic KT theory (see lecture 11).

Let’s ask what we would qualitatively expect. Recall that according to the results of
AHNS quoted in lecture 11, below TKT there is associated with frequency ω a charac-
teristic length rω ≈ (14D/ω)1/2 where D is the vortex diffusion coefficient, and the real

1Phys. Rev. B 22, 5171 (1980)
2I assume a coverage of 1015 He atoms/cm2.
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where , assumes its bulk value of+(see Ref. 34).
The Vycoris a three-dimensionally interconnected

system and hence the 3D-like behavior of the super-

fluid density. In contrast however one sees that the

1.6 ----,.------r---.,..-----r---,--,

superfluid density in the two-dimensional geometry

changes much more sharply at the transition. There-

fore both systems have fundamentally different

behavior at the transition as regards both the super-

fluid mass and the dissipation. This emphasizes the

crucial role substrate geometry plays in determining

the nature of the superfluid transition in thin 4He

films.

In practice the dissipation peak shown in Fig. 3

(and to a lesser extent the period shift) are depen-

dent on the velocity of the cell as is shown in Fig. 5.

We show the dissipation peak for the same thickness

film for three different drive velocities. As the drive

velocity is increased, the dissipation peaks broaden

out, become larger, and move to lower temperatures.

At low velocities (less than 10-3 cm/ sec) we find that
the period and Q-l are velocity independent, while at

larger velocities nonlinear effects set in, and the tran-

sition region and dissipation peak are' broadened.

This is shown in Fig, 6. We have plotted for a single

film thickness the width of the dissipation peak as a

function of cavity velocity. Note that for velocities

less than 10 ILm/ sec, the width is independent of

velocity. However as the cell velocity is increased

beyond some critical value the height and width be-

come a function of velocity.

The dynamic extension of the Kosterlitz- Thouless

theory described in .Appendix A is inappropriate to

model the data in the high-velocity regime. The ver-

sion of the theory by AHNS5 worked out in Appen-

dix A assumes the validity of linear response. Unfor-

tunately this assumption is no longer valid in the "".

high-velocity regime. Therefore the fits to theory can

only be made using the low-velocity data. As we

understand it, work on a more complicated version of

the theory allowing for high-velocity effects is
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FIG. 3. Shift in period, tJ.P,and the change in dissipation

attributable to the superfluid, Q-l, are shown as a function

of temperature at the superfluid transition.

1.2

These features in the dissipation are unique to the

two-dimensional superfluid. Neither the Androni-

kashvili experiments in bulk helium nor the experi-

ments performed for the films adsorbed on the

three-dimensionally connected substrate, porous

Vycor glass." exhibit any excess dissipation associat-

ed with the superfluid transition. The peak in dissi-

pation in the present experiment points to a funda-

mental difference between onset phenomena in two-

and three-dimensional superfluids.

To further emphasize this difference, shown in Fig.

4 are the superfluid masses as measured by Vycor

and 2D Mylar Andronikashvili cells. Note that the

Vycor results show a continuous superfluid density at

onset. For Vycor the superfluid density (or period

shift) obeys a power law of the form
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FIG. 5. Dissipation peak for a single film at three dif-

ferent values of cavity velocity (arbitrary units).
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FIG. 4. Superfluid period shift for 4He in a Vycor and

Mylar Andronikashvili cell.

and imaginary parts of ε(ω) are given up to numerical constants of order unity by

Re ε(ω) = ε̃(rω, T ) (10)

Im ε(ω) =

(
r
dε̃

dr
(r, T )

)
rω

(11)

where ε̃(r, T ) is the static dielectric constant at scale r. We moreover recall that the
length scale at which ε̃(r, T ) changes (increases) appreciably is ξ−(T ), where ξ−(T )
increases fast as T approaches TKT from below. Hence we conclude that for given ω
there is a characteristic temperature T0 such that

ξ−(T0) ∼ (14D/ω)1/2 (12)

The real part of ε−1(ω) should be approximately constant for T � T0, and for T ∼ T0

should drop smoothly to zero, while the imaginary part should, like Im ε itself, be strongly
peaked, as a function of T , around T0. The data indeed show just this behavior. In fact,
BR were able to get a fairly impressive fit for a film∼ 35µmol/m2 using the fit parameters

TKT = 1.2043K, ρs(T
−
c )A/M = 3.4× 10−6, F = 1.2

ε′ = 0.07, ln(14D/r2
0ω) = 12

(13)

(here F is the fitting overall constant multiplying the free-vortex contribution and ε′ is
the “background” contribution to the dissipation). With these parameters the fits to
the approximated theory (x + 2 ≈ 2) are fairly good (see BR’s fig. 10) and the fits to
the unapproximated one even better (fig. 12).

There have been a number of subsequent experiments on pure 4He films, most of
which have shown reasonable agreement with the theoretical predictions for ε(ω, T ). In
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particular, a torsional-oscillator experiment by Bowley et al.3 systematically studied
films of 4He on hydrogen-deuteride plated graphite, with thicknesses d ranging from 1
to 3 atomic layers. They found that when Re ε−1(T ) is plotted against Im ε−1(T ) (of
course at fixed ω) a high degree of “collapse” is obtained (i.e. the curves for different
d fall nearly on top of one another), although they do not in fact fit the theoretically
expected curve all that well. In another recent experiment, Hieda et al.4 were able, by
exciting overtones of their microbalance, to measure the frequency-dependence of ε(ω)
at constant T , and found that the theoretical prediction is well reproduced.

Thus, so far the data seems to confirm the theory excellently. However, there are a
couple of problems:

(a) The interpretation given by BR of their data relies on the film being completely
uniform: if that is not so, then presumably TKT and hence ε would be position-
dependent and what one would measure is some kind of complicated average. In
fact, there seems no obvious reason to believe that Mylar (the substrate in this
experiment) is particularly smooth, which suggests that the agreement with theory
may be partly serendipitous. However, it seems less likely that this objection
applies to the HD-plated graphite substrate used by Bowley et al.

(b) All the results so far quoted relate to films of pure 4He. When 3He is added (up to∼
10% concentration, the maximum stable one) the result change dramatically; while
as far as I know all experiments to date have seen an anomaly identifiable as the
KT transition, several of them5 (including those of BR) also see a second anomaly
at a somewhat lower temperature (and its features are not always reproducible
between experiments). The nature of this second anomaly is at the time of writing
quite obscure; as mentioned earlier, its occurrence might suggest that the role of
an appreciable normal fraction may not be as innocent as much of the literature
has assumed.

I now turn more briefly to the superconducting case. As regards the symmetry of
the order parameter, this is identical to the case of a neutral superfluid, since in each
case the order parameter is a complex scalar object and a gradient of its phase is asso-
ciated with a supercurrent; the difference lies only in the microscopic interpretation of
the objects described by it (Cooper pairs as distinct from single He atoms). However,
a more important difference appears to lie in the fact that the order parameter of a su-
perconductor interacts strongly with the electromagnetic field, resulting in the Meissner
effect: as a result, in a bulk 3D superconductor the supercurrent due to a vortex falls off
exponentially at distances & λL (the London penetration depth); thus, the total energy
of a vortex is finite, the vortex-antivortex interaction is exponentially small for r & λL

and none of the considerations of KT would appear to apply. Thus, in their original
paper KT remark that they would not expect their analysis to apply to superconducting
films.

3JLTP 113, 399 (1998).
4J. Phys. Soc. Jpn. 78, 033604 (2009).
5e.g. Finley et al., PRL 98, 265301 (2007).
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Actually this is too pessimistic. What saves us is that in a thin superconducting film
(d � λL) the Meissner effect itself is profoundly modified; in fact, for large enough r
the supercurrent, and hence the vortex-antivortex interaction, falls off only as r−2, not
exponentially. This by itself would not be enough to restore KT-type behavior. What
is more important is that the “effective London penetration depth” up to which the
supercurrent falls off as r−1 as in the neutral case, is itself very greatly increased with
respect to its bulk value λL:

λ
(2D)
eff = 2λ2

L/d (14)

For a film of thickness ∼ a few tens of Å, this length is very long; it can even be of the
order of sample dimension or larger. Thus, for a sufficiently thin and dirty6 film the
analogy to the case of a neutral superfluid is essentially exact, the only difference being
that the quantum of circulation is now ~/2me rather ~/m4He. Thus one would expect
that the KT transition temperature should be given by the formula

kBTKT =
π

8
ρ0
s(T )(~/m)2 (not π/2) (15)

where m is the electron mass. It should be noted that for a dirty superconductor ρ0
s(T ),

the “mean-field” superfluid density, may already be much smaller (by a factor ∼ l/ξ0,
l = normal-state mean free path, ξ0 = Cooper-pair radius) than O(ρ(1 − T/Tc)). The
quantity 1 − TKT /Tc is thus of order (ξ0|l)/(ndλ2

T ) (n = 3D density, d = thickness of
film, λ∗T = d.B. wavelength at Tc), which is almost inevitably � 1.

The application of KT-type ideas to a thin superconducting film has been discussed
by Halperin and Nelson,7 with the following conclusions:

(1) Above Tc, just as in the neutral superfluid, the “superconducting” contribution
to the dc conductivity8 comes entirely from the motion of free vortices. A simple
calculation gives

R = nfµe
2/~π2 (16)

where µ is the vortex mobility and nf the number of free vortices per unit area.
For a dirty superconductor the theoretical expression for µ is 2e2ξ2

GL/~2πσn where
σn is the normal-state resistivity. Using this and the fact that nf ∼ ξ−2

+ , we find
for the conductivity relative to the normal-state (i.e. T > TBCS) value the result

σ/σn ∼ ξ2
+/ξ

2
GL (17)

which diverges at the KT transition (as exp t−1/2) since ξGL is finite there.

(2) HN also show that the diamagnetic susceptibility diverges as T → TKT from above;

χ ∼ const. ξ2
+(T ) ∼ exp t−1/2 (18)

6Dirt helps by increasing the value of λL.
7JLTP 36, 599 (1979).
8Or rather to the dc resistivity, which would be zero in the absence of vortex motion!
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(3) Finally, in superconductors there is a regime analogous to what we called regime
(a) for the neutral superfluid, that is, the regime of low (in fact zero) frequency
and high currents. In that case, by analogy to the theory developed by AHNS
for the neutral superfluid, which we recall gave a vortex-antivortex unbinding rate
proportional to v4

s , we find that the number of unbound vortices ∝ v2
s . Since

the voltage should be proportional to the number of unbound vortices times the
drift rate across the current, which is proportional to vs, we find below Tc–up to
logarithmic factors the result

V ∝ const. Iδ (19)

where the exponent δ is predicted to approach 3 in the limit T → T+
KT.

A test of these ideas was carried out by Hebard and Fiory9 (and a number of other
people); they measured the dc conductivity of a 100 Å thick film of In/InO as a function
of temperature, in a magnetic field less than 10−6 T (necessary so that the essential
condition of “charge neutrality” (equal number of vortices and antivortices) should be
realized). They verified essentially all the predictions of the theory which they were able
to test, in particular the exp−bt−1/2 behavior of the resistance above TKT (see fig. 3 of
their paper) and the power-law behavior of the I−V curve at TKT (though the measured
value of δ is ∼ 3.4 rather than 3: part but not all of the discrepancy is thought to be
understood, see p. 1606, paragraph 2).

The good agreement of the dc conductivity data for dirty thin superconducting films
with the KT theory is actually somewhat surprising, since that theory relies, for not
only dynamic but also static predictions, on the assumption that the vortices are free to
move in the plane, and one might have thought that in a dirty film they would be pinned
by disorder. It seems that either the large size of the core (∼ ξ0 ∼ 50 Å in In/InOx)
or some other consideration makes them insensitive to pinning on the scale of atomic
distances.

A system somewhat related to superconducting films is a planar array of super-
conducting islands coupled by Josephson junctions, and a number of experiments have
looked for the KT transition in this system.10 One advantage it possesses vis-à-vis
metallic films is that the energy scale of the mean-field behavior is set by the 3D bulk
energy gap ∆, while the “superfluid density” is controlled by the inter-island Josephson
coupling J , and there is no reason for there to be any particular relation between ∆ and
J . Since the effective superfluid density ρs(T ) is proportional to J , and TKT is in turn
controlled by ρs(T ), while the mean-field transition temperature Tc0 is controlled by ∆,
this means that it is very easy to obtain the condition TKT � Tc0, which inter alia allows
us to treat the normal fraction as negligible. Generally speaking, the agreement with
the BKT predictions for the (linear and nonlinear) I−V characteristics of those systems
is comparable to, though perhaps somewhat less impressive than, that on thin films.
In addition, the application of a magnetic field perpendicular to the array introduces a

9PRL, 50, 1603 (1983).
10See e.g. C.J. Lobb, Physica 126B, 319 (1984).
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whole new gamut of effects, since the Josephson coupling is now “frustrated”: see Lobb,
loc. cit.

Finally let us discuss briefly some more recent work on the KT transition in quasi-2D
ultracold atomic gases.11 Actually, when viewed in a realistic experimental context these
systems immediately raise a conceptual problem, for the following reason: Everything
we have said so far relies implicitly on the idea that the “2D” system in question does
not possess true long-range order, but at the best an order (below TKT) of “topologi-
cal” nature. That this assumption is indeed true for a truly 2D system in free space
is guaranteed by Hohenberg’s theorem. However, in real life the ultracold atomic gases
are always confined by a harmonic trapping potential, typically provided by an inhomo-
geneous magnetic field; in particular, this is the case in the experiments of Hadzibabic
et al. But, while the concept of long-range order may itself be somewhat ill-defined in
the presence of a spatially inhomogeneous potential, one can still ask whether “BEC”
occurs, i.e. whether the single-particle density develops a single eigenvalue of the order
of the total particle number N ; and for an ideal 2D gas in a (2D) harmonic potential,
the answer is certainly yes! (The reason is that the single-particle density of states is
thinned down from its constant form for 2D free space to a form linear in ε, which is
“thin” enough to guarantee the appearance of BEC). Thus, at first sight, KT-type argu-
ments cannot get off the ground. On the other hand, it is tempting to argue that with
a repulsive interatomic interaction Hartree-type effects will make the chemical potential
µ(r) seen by the “last added” atoms look fairly flat over the region of cloud, so that the
behavior of fluctuations around the mean-field will be much as in 2D free space. At least
an experiment seems required. . .
One feature of the ultracold atomic gases which distinguishes

x

z

 

them qualitatively from the more traditional condensed-matter
systems discussed so far is the possibility of obtaining more or
less direct information, by interference experiments, about the
phase of the condensate wave function. In a famous early ex-
periment along these lines two initially isolated bulk (3D) con-
densates were allowed to expand and overlap, and a spectacular
interference pattern was observed, with however an offset which
varied randomly from shot to shot, indicating that in some sense
the measurement forced the two condensates to “choose” a def-
inite relative phase. Suppose now that we have two quasi-2D
condensates occupying nearby parallel xy-planes, and they are
initially isolated but subsequently released and allowed to ex-
pand and overlap along the z-axis. Naively, we expect that the
condensate phase difference ∆φ(r‖) for any one value of r‖ ≡ (x, y) would be chosen ran-
domly. However, once that is fixed the value of ∆φ(r′‖) for any other point r′ ≡ (x′, y′)

would be (partially) fixed by the phase correlations within the individual planes. Since
the position of the fringes along the z-axis is fixed by ∆φ(r‖), it follows that a measure-
ment of the density ρ(z, r‖) integrated (partially or totally, see below) over r‖ will give
us information about the phase correlations within the individual planes. More quanti-

11Hadzibabic et al., Nature, 441, 1118 (2006).
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tatively, on any one shot, the density ρ(z, r‖) should be given (with a suitable choice of
origin for z) by

ρ(z, r‖) = const.
(
A+B cos(k0z + ∆φ(r‖))

)
(20)

where the quantity B/(A+B) ≡ V is the ”local” fringe visibility, and k0 = 2π/λf where
λf is the fringe spacing (determined by the detailed dynamics of the expansion process).
What is actually measured in the experiment of Hadzibabic et al. (by laser absorption
imaging) is the y-integral of the density (20), and they represent the result in the form
(apart from an uninteresting envelope function)

C(x, z) = 1 + c(x) cos(k0z + φ(x)) (21)

They then consider the quantity12 (averaged over tests)

〈C2〉(Lx) = L−2
x

∣∣∣∣∫ Lx

0
dx c(x) exp iφ(x)

∣∣∣∣2 (22)

A little thought shows that provided V and k0 are independent of x and y, the quantity
〈C2〉(Lx) is proportional, at any given temperature, to the double integral

L−2
x

∫ Lx

0
dx

∫ Ly

0
dy
∣∣〈exp

(
i∆φ(x, y)− i∆φ(x′, y′)

)
〉
∣∣2 ∼

1

Lx

∫ Lx

0
dx

∫ Ly

0
dy |〈ψ(0, 0)ψ∗(x, y)〉|2

(23)

the dependence on the “average” phase difference of the two planes having fallen out.
Note that in this expression Ly is constant at the physical y-dimension of the cloud (about
10µ). Most of the data was taken for Ly � Lx ≡ x-dimension of cloud (∼ 159µ).

Let us consider the dependence of 〈C2〉(Lx) and Lx under these conditions for three
cases, denoting the correlation 〈ψ(0, 0)ψ∗(x, y)〉 (assumed isotropic) by K(r⊥) (r⊥ ≡
(x2 + y2)1/2):

(1) True LRO (K(r)→ const., r →∞): evidently 〈C2〉(Lx) = independent of Lx.

(2) Short-range correlations only (K(r) ∼ exp−r/ξ where ξ � Lx): 〈C2〉(Lx) ∼ L−1
x .

(3) Power-law correlations, K(r) ∼ r−η: 〈C2〉(Lx) ∼ L−2η
x

Hadzibabic at al. find that above a certain temperature T0 〈C2〉(Lx) is approximately
proportional to L−1

x (in their notation α ≈ 0.5) while below T0 it scales as L−2α
x where

α tends to 0.25 as T → T0 from below. This is exactly what is expected at the KT

transition, since η → 1/4 as T → T
(−)
KT . They thus tentatively identify T0 with TKT.

A further, more qualitative, observation reported by Hadzibabic et al. is of free vor-
tices which manifest themselves as “dislocations” in the interference pattern (note that
tightly bound vortex-antivortex pairs would not show up in the pattern). As indicated
in their fig. 4, such free vortices are virtually absent for T < T0 but proliferate rapidly
above T0, again in qualitative agreement with the BKT scenario.

12They do not actually define 〈C2〉(Lx) explicitly: this is my best guess as to the implied definition.
(cf. their eqn. (1))


