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More on the S-I transition: normal-metallic phase at T = 0

As noted at the end of the last lecture, a semiquantitative understanding of much of the
data on the superconductor-insulator transition in thin metallic films can be obtained by
regarding it as a zero-temperature QPT. However, while the data in nonzero magnetic
field certainly seem to be well explained by taking the field as the tuning parameter
(and the same applies, with the caveat noted in lecture 13, to electric fields), what is
the tuning parameter when the external field is zero? Experimentally it certainly seems
to be the film thickness, but it is difficult to see why this should as such have any
fundamental significance, and the natural assumption would seem to be that it is the
sheet resistance R� which is crucial. It is then striking that at least some of the data
indicate that the transition occurs very close to the value R� = RQ ≡ h/4e2 ≈ 6.45 kΩ.
Although it is nowadays not generally believed to be the whole truth, there is a simple
model1 which accounts for this feature; it is essentially a generalization of the “JJ array”
model explained in lecture 13 to take into account the effects of dissipation.

Let’s start by considering briefly a celebrated model of dissipation in QM, the so-
called spin-boson model.2 Formally, this describes a spin-1/2 particle coupled (in a
particular way) to a bath of simple harmonic oscillators; in the limit of interest to us
the Hamiltonian is

ĤSB = −1
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where the σ̂i are Pauli matrices and ĤSHO is the Hamiltonian of a set of simple harmonic
oscillators, with densely spaced frequencies up to some cut off ωc � ∆, whose coordinates
are {xα}. In the present context it is helpful to think of (1) as a description of a particle
tunneling between two spatially distinct states (wells) labeled by the eigenstates of σ̂z
and separated by q0, subject to “measurement” of σ̂z by an “environment” modeled by
the oscillator bath; then, in the absence of the system-bath coupling described by the
second term in (1), the rate of tunneling between the wells would be ∆. All the effects
of the “environment” turn out to be encapsulated in the coupling spectral density J(ω)
defined by

J(ω) ≡ π
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mωα

)
δ(ω − ωα) (2)

The case of interest in the present context is when J(ω) has the so-called Ohmic form

J(ω) = ηωf(ω/ωc) (3)

where f(x) is some smooth function (e.g. exp−x) which tends to 1 as x→ 0 and to 0 as
x → ∞; thus for ω . ∆ we have simply J(ω) = ηω. By working out the consequences
of the coupling for the classical motion of the original extended system (see AJL et al.,

1Chakravarty et al., PRL 56, 2303 (1986); M.P.A. Fisher, ibid. 57, 885 (1986).
2see e.g. AJL et al., RMP 59, 1 (1987).
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ref. cit., section 2) we identify η as the friction coefficient which appears in the classical
motion. For subsequent convenience we define the dimensionless parameter

α ≡ ηq20/2π~ (4)

The crucial result that we shall need concerning the spin-boson problem, which can
be obtained by any one of a variety of arguments, is that for ∆� ωc (a condition which
we shall always implicitly assume) the point α = 1 corresponds to a qualitative change in
the thermodynamic (and also the dynamical) behavior: For α < 1 the groundstate of the
system is still, as for the original uncoupled system, a coherent quantum superposition
of the states in the left and right wells, corresponding to σz±1 respectively, although the
tunneling splitting which separates this groundstate from the odd-parity excited state
may be much reduced (by a Frank-Condon factor) from its original value ~∆. For α > 1,
on the other hand, coherence is entirely lost and the groundstate is twofold degenerate,
corresponding to localization in one well or the other. It is important to observe that
provided only that ∆� ωc, the value of α on the separatrix, namely 1, is independent of
∆. This radical change in behavior at α = 1 is sometime viewed as a “zero-dimensional
phase transition”.

Now let us take the original continuous variable q which distinguishes between the two
wells to be the phase drop ∆φ across a single Josephson junction. We model the latter
by the so-called resistively shunted junction (RSJ) model, in which the junction itself is
shunted by both a capacitance C and a parallel resistance (typically of unknown origin)
Rn. Since the dissipation, which in the case of mechanical particle whould be ηq̇2, is in
this case (by the Josephson relation ∆ϕ̇ = 2eV/~) given by V 2/Rn = (~/2e)2∆φ̇2/Rn,
we identify η as (~/2e)2R−1n . Consider now the case where the two wells are separated
in phase by 2π, ignoring for the moment any questions about whether those two states
are really different. From eqn. (4), the value of α for this case is

α =
h

4e2
1

Rn
≡ RQ/Rn (5)

Hence, if we take this application of the spin-boson model seriously, for Rn < RQ the
phase drop ∆φ across the junction in the groundstate is fixed at the value 0 (or 2π),
while for Rn > RQ it is a superposition of the two states, suggesting that it prefers to
make the conjugate variable N rather rather than ∆φ definite. Thus we might guess that
Rn < RQ would correspond to the superconducting state and Rn > RQ to an insulating
state.

The argument, while suggestive, is of course far too naive: it is not even clear that
we can make sense of a “superposition” of the states ∆φ = 0 and ∆φ = 2π. However,
remarkably, a more sophisticated calculation (see the cited references) for a system of
grains connected by Josephson junctions reproduces the result that exactly at α = 1
(independently of both the Josephson coupling EJ and the capacitance energy EC of the
grains) the system undergoes a qualitative transition in its behavior: for α < 1 (large
Rn) the relative phase of neighboring grains is able to “diffuse” over many multiples
of 2π, and there is no LRO; the system is thus predicted to be insulating at T = 0.



PHYS598PTD A.J.Leggett 2016 Lecture 14 More on the S-I transition 3

For α > 1 (small Rn) on the other hand, the dissipation (∝ R−1n ) pins the relative
phase on neighboring grains and hence the system possesses LRO and behaves as a
superconductor. Thus, counter-intuitively, the presence of dissipation (in the motion of
the relative phase) is actually helpful to superconductivity!

This is still by no means the whole story, and over the last 30 years there have been
a number of calculations along lines similar to the above, in some cases modeling the
system not by an array of Josephson junctions but by a “dirty boson” picture. All those
calculations have in common that they attribute the S-I transition to quantum phase
fluctuations of the Cooper pairs and regard it as a QPT, and that they predict that the
value of R� at the transition should be of order RQ (though they differ in the degree of
universality, if any, predicted for the ratio Rn/RQ).

Reviewing the results of the last lecture and the above remarks, we see that we have
two apparently quite different theories of the S-I transition: a “fermionic” mechanism, in
which the important effect of disorder is primarily to modify the single-electron spectrum
(so that no Cooper pairs are present in the insulating phase), and a “bosonic” scenario
in which Cooper pairs are formed just as in the pure metal, but may or may not be
localized due to the effects of quantum fluctuations of their phase. Thus the obvious
question is, what would be the experimental signatures of each of these two mechanisms?

A very spectacular prediction of the bosonic scenario is the scaling relations charac-
teristic of the behavior near a QCP; that such scaling behavior is observed, as a function
of both thickness and magnetic field, would seem to be a strong argument in favor of
this scenario. On the other hand, the universal value of Rn predicted by most (though
not all) versions of the dirty-boson theory is not always seen experimentally. As to the
fermionic scenario, a major prediction is that the energy gap, as measured in tunneling
experiments, should scale with Tc and vanish in the insulating state; by contrast, the
bosonic theory predicts that since the gap is a function only of the amplitude of the
order parameter and is insensitive to its phase, it should be finite even in the insulat-
ing phase (unless the interaction of the single-electron spectrum with order parameter
phase fluctuations somehow depresses it to zero). In this respect experiments on quench-
condensed disordered films seem to favor the fermionic picture: the tunneling gap indeed
scales with Tc and vanishes in the insulating phase. By contrast, in amorphous films of
InOx, the gap appears to remain finite in the insulating phase (see Lin et al., fig 6b,
insert). Thus it appears that both mechanisms may play a role.

Is it possible to test directly for the presence of Cooper pairs in the insulating phase?
One indirect piece of evidence is that the magnetoresistance is direction-dependent, and
thus presumably has an orbital component, with a sign that would be consistent with
vortex-flow mechanism. More recently, the group of Valles has reported a striking result:
They examined the magnetoresistance of a film of amorphous Bi quench-condensed in
aniodized Al2O3 with a “nanohoneycomb” network of holes drilled in it. The experimen-
tal (activated) resistivity, when plotted as a function of field at constant temperature
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(and thickness) showed dramatic AB-type oscillations, with a period corresponding to
one superconducting flux quantum (h/2e) through the hole. Unless one interprets this
behavior as a variant of the Sharvin effect (see lecture 6), it seems clear evidence that
Cooper pairs exist in the insulating phase and moreover that their phase is coherent over
a length at least of the order of the circumference of the holes (∼ 100 nm).

To complicate the picture further, this effect (and also the strong magnetoresis-
tance) is absent in similar films grown on an atomically smooth Si substrate, which are
presumably more homogeneous. One possible explanation may be that in a severely
inhomogenous film (e.g., presumably, those grown on Al2O3) the amplitude of the order
parameter remains nonzero but fluctuates strongly in space, so that the S-I transition is
actually a percolative transition. See Lin et al., ref. cit., for further discussion.

Let’s now turn to a different though somewhat related topic, namely the existence or
not of a normal-metallic state at T = 0. We shall thus assume that the system of interest
does not become superconducting. We recall from lecture 7 the following conclusions:

(1) If the phase-breaking time is measured, e.g. by measuring the crossover field in
the magnetoresistance as a function of T , it should tend to ∞ as T → 0 (as
some negative power of T ) except for the effect of static magnetic impurities3 [In
particular, el-el interactions should give τ−1φ ∼ T in 2D and T 3/2 in 1D: see LR
section III.2.]

(2) If we simply add the contributions to the correction ∆σ(T ) to the Boltzmann
conductivity in 2D from WL and from interactions (as seems reasonable when
both are small) we find that apart from an uninteresting (and unmeasurable!)
constant the total correction is given by the expression

∆σ(T ) = −(e2/πh)(αp+ 1− 3

4
F̃σ) ln(1/Tτφ) (6)

where p is the power of T with which τ−1φ tends to zero as T → 0, and α is a

constant of order 1. Although values of the “screening function” F̃σ up to 3.5 have
been measured in Si MOSFET’S, to make the factor in (6) negative would require
αp < 1.6, which seems unlikely though not impossible. Unless this happens, or the
situation changes qualitatively when ∆σ(T ) becomes comparable to σ0, one would
expect that a normal-metallic state cannot exist in 2D as T → 0. This was indeed
the accepted wisdom until around 1997.

In the last 20 years two sets of experiments have been carried out which severely
challenge both the above general conclusions. The first set, associated primarily with

3It is essential, here, to remember that the “anomalous” effects of spin-orbit scattering discussed in
lecture 6 require that the scattering be effectively 3D. In Si MOSFET’s or GaAs heterostructures, it is
effectively 2D and the spin-orbit scattering simply adds to the dephasing terms.
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the names of P. Mohanty and R.A. Webb, claim to refute the assertion that τφ(T )
always → ∞ as T → 0. The second set, originally conducted by Kravchenko, Sarachik
and co-workers but subsequently confirmed by several other groups, tend to suggest that
a normal-metal state can indeed exist at zero temperature in a 2D system even in the
absence of a magnetic field and of magnetic impurities. Although there is obviously a
possible connection between the two sets of experiments, it makes sense to discuss them
independently, and I start with the Mohanty-Webb experiments.

In their original paper,4 Mohanty et al. start from the observation that despite the
confident theoretical prediction that τφ(T ) should tend to ∞ as T → 0, all existing
experiments on magnetoresistance, whether on 1D systems (wires) or 2D systems (films),
if interpreted according to the standard prescription, show a flattening-off of τφ(T ) at
temperatures ranging from as high as 10 K (for some 1D GaAs devices) to ∼ 20 mK
(for some 2D Au films). In view of the uncertainties concerning noise and magnetic
impurities in those experiments, they then present results of their own measurements
of τφ(T ) (as again inferred in the standard way from magnetoresistance curves) in six
quasi-1D Au wires (width 25-250 nm, length 50-200). In each case the inferred τφ(T )
flattens off at a temperature ∼ 1K, to a “zero-T” value which ranges from ∼ 0.3−3 nsec.
They find that at low T all their data show an excellent fit to the formulae (which let
us for the moment treat as semi-empirical)

τφ(T ) = τ0 tanh(απ2
√

~/τ0kBT ) (7)

where τ0 is the T → 0 saturation value which is read off directly from experiment; thus
the only fitting parameter is the dimensionless constant α, which they find to vary from
0.6 to 1.1 depending on the sample.

Two obvious possible explanations of the data (or at least of the qualitative features)
are

(a) that because of external noise the true temperature is not that measured by their
thermometer but has saturated, and

(b) that the flattening is real but is an effect of magnetic impurities (which as we saw
in lecture 6 are expected to give a temperature-independent contribution to τφ).

In an attempt to exclude explanation (a), the authors measured the resistance as a
function of T in a field large enough that LM � Lφ(T ), so that the WL effect should have
saturated. They find the behavior theoretically expected for interaction effects in 1D,
namely ∆ρ ∼ T−1/2 (with the constant also as predicted) and infer that the electrons
are still in good contact with the thermal bath5 (i.e. the “true” T is that measured by
the thermometer). To try to exclude explanation (b), they compared the τφ(T ) of their
samples before and after ion implantation of up to 2.8 ppm of Fe impurities (which are
known to form localized magnetic moments). As expected, the Fe ions decrease τφ by

4PRL 78, 3366 (1997).
5This conclusion might of course fail if the thermal contact itself were to depend strongly on magnetic

field, but there is no obvious reason to suspect this.
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about an order of magnitude; however, they do not appear to lead to saturation, but
rather to a lnT term in the resistivity; this is thought to be due to the Kondo effect,
which is known to occur in the AuFe system.

Mohanty et al. go on to argue that the flattening of τφ is a genuinely intrinsic effect,
and is due to “zero-point dephasing” by electron-electron interactions. On the basis of
their hypothesis they calculate a value for the τ0 which appears in their semi-empirical
fit formula, namely (1D system only!)

τ0 =

(
4π~2L

e2d2Rm2D3/2

)2

(8)

where L is the length of the wire and d = 2 or 3 its effective dimensionality with respect
to the elastic mean-free path l, D is the diffusion coefficient and R the resistance. In
subsequent work6 they elaborate this picture further and attempt to relate it to other
experimental anomalies such as the diamagnetism of mesoscopic rings.

Ever since its original publication, this work has been extremely controversial. Basi-
cally, there seem to be three possible interpretations:

(1) The apparent saturation is an experimental artefact, due e.g. to noise in the current
leads.

(2) The saturation is real but is due to effects of an already known type, e.g. two-level
tunneling systems.

(3) The saturation is real and shows need for radical revision of standard ideas con-
cerning decoherence etc.

My own view (based on personal knowledge of the authors!) is that (1) is extremely
unlikely. The problem with position (2) is that it appears to be essentially unfalsifiable,
since it is very difficult to exclude the presence of a concentration of some unspecified
“two-level systems” which is sufficient to give the observed saturation but essentially
unobservable in other types of experiments. Position (3) has been strongly advocated
not only by the original experimental team but also by Zaikin and Golubev,7 who claim
to have done an improved diagrammatic calculation which shows that “zero-point de-
phasing” by el-el interactions is a real effect; it has been equally strongly contested by
a number of theorists who believe that the original picture developed in the early 80’s
remains completely valid, and who claim to have faulted the Zaikin-Golubev calculation.
At the time of writing the jury is still out. . .

Now let’s turn to the experiments8 which suggest the existence of a normal metal in
2D at T = 0. These experiments are conducted on Si MOSFET’s, AlGaAs heterostruc-
tures and similar systems, with mobilities of the order of ∼ 4×104 cm2/V sec. In previous

6e.g. PRB 55, 13452 (1997), Physica B 280, 646 (2000), PRL 88, 146601 (2002).
7PRL 81, 1074 (1998), PRB 59, 9195 (1999).
8The best review is probably Abrahams et al., RMP 73, 251 (2001).
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Fig. 1 Fig. 2

experiments in such systems, e.g. on the quantum Hall effect, the areal density n is typi-
cally ∼ 1011-1012; in these experiments, it was lower, typically in the range ∼ 1010-1011.
It should be noted that the value of the dimensionless parameter rs ≡ m∗

mε
2

a0
√
πns

(a

measure of the ration of the typical Coulomb interaction to the Fermi energy) is quite
large in these systems, ranging from ∼ 4 to ∼ 40. In fact, the Fermi energy is typically
∼ 0.6 meV while the Coulomb energy is ∼ 10 meV.

As usual in such systems, the only quantity which is easy to measure is the resistivity
(or sheet conductance), and the only things which can be easily easily varied apart from
the areal density are the strength and direction of the electric and magnetic fields. With
regard to the magnetic field, it turns out that the clearest pattern of data emerges where
it is parallel to the plane (so that there are presumably no orbital effects): where it is
(partially or wholly) perpendicular to the plane there are complications connected with
the quantum Hall effect (which is in fact seen at sufficiently high values of the field). I
will therefore concentrate, here, on the situation in parallel fields.

First let’s consider the behavior in zero field, and consider for definiteness the orig-
inal Si MOSFET system. The linear resistivity behaves as follows: For densities below
a critical value nc (approximately 9 × 1010 cm−2 ) ρ(T ) increases slowly with decreas-
ing temperature and appears to be tending to ∞ for T → 0 (the lowest temperatures
obtained in the experiments to date are probably around 4 mK). However, at densities
above nc the behavior is quite different: ρ(T ) rises slowly with decreasing T down to a
temperature T ∗ ∼ 2 K, then starts to decrease. Thus there exists a “separatrix” along
which ρ(T ) is essentially flat in the limit T → 0; this corresponds, as stated, to a crit-
ical density nc ≈ 9 × 1010 cm−2, and the T → 0 limit of the sheet resistance (≡ ρc)
is approximately 3h/e2. Qualitatively similar results are found for GaAs-AlGaAs het-
erostructures, with nc in this case being ∼ 1.5× 1010 cm−2 and a ρc ∼ 1.5 (h/e2). (Note
that the approximate factor of 2 difference does not reflect the presence of 2 valleys
in the Si MOSFET’s vs. 1 in GaAs: it is the “wrong way round”!). The picture is
qualitatively quite similar to what is found in e.g. granular Al films, except that in that
case the resistivity of the curves with ρ < ρc drops very sharply below the “crossover”
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temperature, indicating the onset of superconductivity. In the present case there is no
indication that ρ(T )→ 0 as T → 0, for any value of n.

A surprising and spectacular feature of the data on Si MOSFET’s is their scalability:
for any given value of n, and T . 2 K, one can find a characteristic temperature T0(n)
such that we can write

ρ(T, n) = ρcf(T/T0(n)) (9)

where f has two branches, one “insulating” (n < nc) and one “metallic” (n > nc). A
striking factor is that the function T0(n) is independent of the sign of n − nc: in fact,
we find that if δ ≡ (n− nc)/n, then

T0(δ) = |δ|b (10)

where the exponent b is 1.60± 0.1. Another striking and suggestive feature, illustrated
in Fig. 2, is that the scaled resistivity ρ∗(T ) ≡ ρ(T )/ρc satisfies the “duality” property
(at not too low T )

ρ∗(δ, T ) = 1/ρ∗(−δ, T ) (11)

This is the behavior which is theoretically expected near a quantum phase transition.
The above scaling properties are found in Si MOSFET’s and p-SiGe heterostructures,
but not in GaAs heterostructures. The actual form of the T -dependence well away from
Tc(n) is controversial: on the insulating side it is close to T−1/2 (not lnT !) while on the
metallic side it may be fitted by ρ0 + ρ1 exp−(T0/T )γ , γ ∼ 1.

The effect of increasing the electric field is qualitatively similar to that of increasing
the temperature, with a field of ∼ 50 mV/cm playing the role of T ∗. Again one finds a
scaling behavior: at constant T

ρ/ρc = f2(δ/E
1/a) (12)

where the exponent a is ∼ 2.7.
Now let’s turn to the effect of a magnetic field (in the plane of the surface unless

otherwise stated). Again we focus first on Si MOSFET’s. At high T (& T ∗) such a field
has essentially no effect. At low T , a field induces a very large increase in resistivity
(positive magnetoresistance!): the effect is up to 4 orders of magnitude in a field of 1 T!
The effect is most pronounced on the (originally) “metallic” side of the transition, but
is seen for all densities, and even at the highest densities studied (∼ 8.8 × 1010 cm2) a
magnetic field as small as 1.4 T can make the system insulating (see Abrahams et al.,
fig. 10). The magnetic field effect appears to saturate around a field of ∼ 3 T; it may be
significant that this is roughly the field for which the Zeeman splitting gµBB becomes
comparable to kBT

∗. Qualitatively similar behavior is seen in GaAs heterostructures,
but not in one prima facie analogous system, namely p-SiGe heterostructures; in the
latter system a parallel magnetic field has virtually no effect at all! A very plausible
explanation of this phenomenon is that in this system the spin-orbit coupling is very
strong, and thus since the orbital angular momentum must lie perpendicular to the
plane the spins are also constrained to lie in that direction, so a parallel field has no
(first-order) effect.



PHYS598PTD A.J.Leggett 2016 Lecture 14 More on the S-I transition 9

Apart from the resistivity, the most significant quantity that has been measured
on those systems is the “compressibility” of the electrons or holes, which can be mea-
sured by a capacitance technique. This has in fact been measured for p-GaAs/AlGaAs
heterostructures, and is found to change sign at the critical value of the density.

The explanation of those phenomena is at the time of writing wide open. There are a
few things on can say, however, with fair confidence. The first is that it is almost certain
that the effect of the magnetic field is overwhelmingly through the Zeeman coupling, and
that the degree of metallicity is, qualitatively, inversely correlated to the spin polarization
of the system. The second is that the spectacular scaling behavior strongly suggests that
the point n = nc, T = 0 corresponds to a “quantum phase transition” (i.e., as explained
in lecture 13, a phase transition occurring at T = 0 as other parameters, in this case n,
are varied). And the third is that in considering the possible nature of this transition,
the most reasonable approach (as in the case of the QHE, though for a reason different
in detail) is to concentrate first on the effects of the Coulomb energy and that the KE
is in some sense a perturbation. Beyond this there is no agreement.

One obvious possibility, in view of the (probable) dominance of the Coulomb inter-
action, is that the insulating phase is a sort of “incipient Wigner crystal” – that is, a
state in which the Coulomb energy favors localization of the single-electron states. For
a translation-invariant system numerical calculations indicate that the WC state is sta-
ble for values of rc above a critical value of ∼ 37; this is higher than the value of rc
(∼ 15) at which the separatrix occurs in Si MOSFET’s, but not by a large margin. This
hypothesis of course does not in itself explain why smaller values of rs correspond to a
metallic state, that is why WL does not have the expected effect.

A second possibility9 is that the system is an incipient superconductor, which pre-
sumably is always above the KT transition in the range of temperatures obtained in
experiments so far. Assuming the pairing is of the standard “singlet” type, this would
explain qualitatively why a magnetic field has such a drastic effect (because it acts as
pair-breaking for the spins). The qualitative picture would than be that in the absence
of superconducting-type pairing the system would behave in the traditionally expected
way, i.e. localize at T = 0 (as indeed it seems to do in a sufficiently high field), while
the possibility of pairing destroys the usual argument for localization. It is not clear
how far this scenario can explain the data quantitatively. (For further possibilities, see
Abrahams et al., loc. cit., section 3).

9See e.g. P. Phillips et al., Nature 395, 253 (1998), Phys. Rev. B 64, 184511 (2001); ibid. 052507
(2001).


