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Composite fermions: Experimental evidence for fractional
charge and statistics

Apart, obviously, from the IQHE states, (ν = integer), the values of ν allowed for the
FQHE by the Laughlin argument are at first sight only of the form n0 + 1/q where n0
is a positive integer (including zero) and q is an odd integer. Actually we can generalize
the argument a bit, by using “particle-hole symmetry”: by starting with a filled Landau
level and taking electrons out (i.e. generating holes) we can generate the “mirror image”
of any state with ν < 1/2, and it should have essentially the same properties. Hence we
can generate FQHE states with ν = n0 + (q−1)/q (e.g. from the well known ν = 1/3 state
we can generate a ν = 2/3 one). Such states are indeed seen.

However, while a number of states corresponding to the above values of ν are indeed
seen in experiment, we also see many others, e.g. ν = 2/5 or 4/11, which while “odd-
denominator” are not of the form ν = n0 + 1/q or ν = n0 + (q − 1)/q. The original
Laughlin argument does not obviously explain the existence of such states (if we try to
generalize it naively, it produces values of q which are nonintegral, yielding a MBWF, which
is nonanalytic in the arguments zi − zj). Incidentally, one point to note is that although
the integral QHE is observed at least up to ν = 7, no FQHE has ever been observed for
ν > 4.

There exist a number of apparently different, but essentially equivalent schemes for
generating a “hierarchy” of FQHE states: see Yoshioka ch. 5. To my mind the simplest is
the “composite-fermion” scheme of Jain,1 and I now sketch that.

Let us suppose that we know the solution of the many-body problem for a particular
filling factor ν∗ (which need not be integral, cf. below); let this function be Φν∗(z1z2...zn)
(and let the field nsφ0/ν

∗ be denoted B∗). Now, while keeping ns and hence N constant,
let us change the field B so as to change the filling factor to a new value ν, and consider
as a possible ansatz for the new situation the MBWF

Ψν(z1, z2, . . . zN ) = Φν∗(z1, z2 . . . zN )×
N∏
j<k

(zj − zk)2p (1)

where p is a positive integer. Clearly if Φν∗ is a nonsingular, analytic, antisymmetric
function of the zi’s (apart from the exponential factor) then so is Ψν . Consider now a
“large” orbit of say particle j in the states Φν∗ and Ψν and, compare the extra phase
acquired in the latter case relative to the former. If the orbit were to encircle just one
particle k, this extra phase would be 2π · 2p, and thus if it encloses exactly n particles
it will be 2πn · 2p. Now comes the delicate step: If the orbit area is A, then on average
the number of electrons encircled will be nsA and therefore the phase picked up will be

1See Physics Today, Apr. 2000, p. 39, and references cited therein, or for much more detail J.K. Jain,
Composite Fermions, CUP 2007.
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2π · 2p ·nsA: note that for general values of A this will not be integral. But this is just the
phase that would have been picked up in an extra magnetic field B′ ≡ 2pnsφ0. So we can
argue that, at least at the mean-field level, the new problem (filling factor ν) is equivalent
to the old one with an extra field B′. For this to work the new field B must be related to
the old one B∗ by B = B∗ +B′, i.e.

B − 2pnsφ0 = B∗ (2)

But by definition the old filling factor ν∗ was nsφ0/B
∗, so this gives B = (2pν∗ + 1)B∗,

and hence the new filling factor ν ≡ nsφ0/B is given by the formula

ν =
ν∗

2pν∗ + 1
(3)

At this point we notice that there is actually nothing to stop us replacing the factor
(zj − zk)2p by its complex conjugate, (z∗j − z∗k)2p. (The resulting prefactor is then not in

general analytic, but this does not matter—after all, the quantity |zj − zk|2 is nothing but
|rj − rk|2, and there is no reason why the wave function should not be a function of this
variable!) The effect is simply that the “fictitious” magnetic field B′ is now −2pnsφ0 rather
than 2pnsφ0, and this leads to a − sign in the denominator of the expression for ν (i.e.
1 − 2pν∗, so B∗ is opposite in sign to B). Thus the most general allowed form of ν for
which our “mean-field” maneuver works is

ν =
ν∗

2pν∗ ± 1
(4)

So, given any value ν∗ of the FF for which we can construct a solution, we can do so for
any ν that is related to ν∗ by (4), with any (positive integer) value of p and either sign.

There is one delicate point that we need to notice here: Since the effective magnetic
field has been increased from B∗ to B = (1 + 2pν∗)B, the magnetic length changes cor-
respondingly, so we need to adjust the exponential factor to be exp−

∑
i |zi|2/4l2M where

lM is the actual magnetic length (~/eB)1/2 rather than l∗M ≡ (~/eB∗)1/2. Unfortunately,
this point tends to be swept under the rug in the literature because of the unfortunate
convention of using dimensionless units.

Now, one choice of ν∗ for which we can certainly construct a solution is 1, the value
corresponding to the integral QHE. The ν-values directly derived from this are of the form
ν = 1/(2p + 1), i.e. precisely 1/q where q is an odd integer; so we recover the FQHE for
such states. Indeed, it is easy to see that in this case the ansatz we have written down is
precisely the Laughlin wave function.2 So far, we have obtained nothing new. Moreover,
it is easy to see that choosing ν∗ to be a Laughlin value (2m+ 1)−1 simply gives another
Laughlin state.

2Since as we saw earlier, the Slater-determinant GSWF of the IQHE can be written as the special case
q = 1 of the Laughlin wave function.
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However, there is nothing that tells us that the original filling factor ν∗ has to be ≤ 1,
and the next most obvious choice is some integer n greater than 1. For example, if we
choose n = 2 and set p = 1 we generate values of ν equal to 2/3 and 2/5 – again values
at which the FQHE is seen experimentally. And so on, in fact, most of the values seen
experimentally can be generated in this first step of the possible iteration.

There is, however, one obvious objection to this technique: If we start with ν∗ > 1,
then in general we would expect the wave function to contain single-particle “components”
corresponding to higher LL’s. On the other hand, in the limit Vc � ~ωc we have already
argued that for ν < 1 the MBWF should be made up entirely from single-particle states
in the LLL! If we apply both these statements to e.g. the case ν = 2/5 (ν∗ = 2) we appear
to get a contradiction.

Remarkably, as shown by Jain, this is not so: Once we have multiplied the higher LL
functions by the factor (zj − zk)2p, the resulting MBWF is to a good approximation made
up from only LLL single-particle functions, and to the extent that it is not, any difficulty
can be resolved by projecting the ansatz Ψν on the subspace formed by products of the
LLL states. Indeed, numerical calculations of the true groundstate for (e.g.) ν = 2/5 show
that it is excellently approximated by the projected wave function so obtained.

The most remarkable prediction that follows from the Jain approach (or from other,
equivalent approaches based on bosonization or “anyonization”) concerns the case ν = 1/2
(Yoshioka, ch. 7). We would, of course, not expect this state to show a FQHE, since it
is not “odd-denominator.” However, if we reverse the above argument, we find it can be
derived from a starting state with ν∗ = ∞! But such a state is nothing but the limit
B∗ → 0, i.e. a simple noninteracting Fermi gas. Moreover, states with ν close to but
not equal to 1/2 should correspond to values of ν∗ large compared to 1, which translates
to ~ωc � εF . Thus one predicts that for ν close to 1/2, the QH system should behave
very much like a standard (3D) metal in a weak magnetic field! We will return to this
remarkable prediction in the next lecture.

Given that we have identified a particular FQHE plateau close to a filling fraction ν
given by

ν =
ν∗

2pν∗ ± 1
(5)

what do we expect to be the charge e∗ on the quasiparticle excitations of this state? This
is not entirely obvious; we know that for ν∗ = 1 the answer is e∗ = eν, but this would
be consistent (for example) with either ν∗/(2pν∗ + 1) or 1/(2pν∗ + 1). A simple, if crude,
argument to resolve the dilemma is that it must be possible to add or subtract one (and
only one!) electron to the system by creating an appropriate number of quasiparticles, and
thus the numerator cannot be other than 1. It ought to be possible to construct a more
convincing argument3 by writing down the explicit form of (e.g.) the hole wave function,

3I find the argument given by Yoshioka in paragraph 3 of p. 113 impossible to follow.
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for which we might guess

Ψqh =
N∏
i=1

(zi − z0)2p+1/ν∗Ψν (6)

and integrating over z0 as in the Laughlin case, but this would require a knowledge of the
IQHE and GSWF Ψν∗ for ν∗ > 1, which we have not explored. At any rate, the accepted
result is that for general ν∗ we have

e∗ = ±e/(2pν∗ + 1) (7)

so that for example in the ν = 2/5 FQHE the quasiparticles have charge ±e/5 (not 2e/5).
Let’s now turn to the question of the experimental observation of fractional charge.

This is actually a slightly slippery question, as so often when what one is really testing
is a whole complex of ideas [cf. situation with photoelectric effect]. In particular, it is
sometimes difficult to sort out what are “genuine” effects of fractional charge as such, and
what merely effects of the “fractional” conductance of the Laughlin state. (Yoshioka: “the
actual system is composed of electrons, and the quasiparticles are only a convenient way
to describe the excitations. Therefore, if one is too critical, one may not see [the existing]
experiments as clear evidence for fractional charge.”)

Indirect evidence for the existence of fractionally charged quasiparticles in the bulk of
a FQH system may be obtained from the fact that the longitudinal resistance Rxx has an
activated form as a function of temperature:

Rxx ∼ R0 exp−∆/T (8)

with a “gap” ∆ which is considerably smaller than ~ωc. If fractionally charged quasipar-
ticles and quasiholes exist in the system, with excitation energies εqp and εqh respectively,
then we should expect a temperature-dependence of the form (8), with ∆ = (εqp + εqh)/2
(the factor of 2 comes, just as in the standard theory of semiconductors, from entropy
considerations.4 On dimensional grounds we should expect that ∆ is of order e2/4πεε0lM
and hence is proportional to B1/2, and this appears crudely consistent with the experi-
mental data for the case ν = 1/3 (see Yoshioka fig. 4.10); the experimental coefficient is
somewhat smaller than the value calculated on the simplest model, but the discrepancy is
believed to be qualitatively understood (ibid., p. 87). A second piece of indirect evidence
comes from the observation in light-scattering experiments, of an excitation with an en-
ergy ∼ e2/4πεε0lM , which may (or may not!) be identified with a pair of “magneto-rotons”
(essentially, exciton-like quasiparticle-quasihole bound states).

Most of the evidence for fractional charge and possibly fractional statistics comes,
however, from experiments that probe the edges rather than the bulk of the sample. Apart

4One might worry that the situation is not comparable to that in a semiconductor because the statistics
obeyed by the quasiparticles is not fermionic but anyonic. However, in the dilute limit this should not
matter as in that limit both reduce to Maxwell-Boltzmann.
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from experiments on the I − V characteristics of the edge states (which in some sense test
the combination of the Laughlin theory and Tomonaga-Luttinger theory of 1D systems,
and will not be discussed here) the experiments that currently provide the best evidence
for fractional charge in the FQHE are of two types: the conductance through a quantum
“antidot” and shot noise. Both certainly can be interpreted in terms of fractional charge:
the argument is about whether such an interpretation is necessary.

The earliest experiments on transmission through a quantum “antidot” were reported
by two groups: Goldman et al.,5, who interpret them as direct evidence for fractional
charge, and Franklin et al.,6 who do not. The experimental setup is similar in the two
cases (see Fig. 1).

GaAs heterostructures with an areal electron density ∼ 1011 cm−2 and mobilities ∼
1×106 cm2/V sec were patterned to provide the structure shown (in both cases the antidot
radius is ∼ 300 nm), and the resistance between “leads” 2-3 and 1-4 measured by a four-
terminal technique in the presence of a variable magnetic field (0-15 T) perpendicular to
the plane of the sample. In the QH regime (integral or fractional) one expects a non zero
conductance7 between the leads only because of tunneling between the edge states, which
in this case should take place via intermediate states on the quantum dot and should be
sensitive to the behavior of these states as a function of B and of the potential on the
antidot (controlled by the gate voltage Vs, which is negative with respect to the bulk).
What one actually sees is an oscillatory component in the resistance (i.e. the current) as a
function both of B and of Vg and the question is what this tells us about the nature of the
many-body states involved. Note that the center of the antidot is devoid of electrons.

5Science 267, 1010 (1995).
6Surface Science 361, 17 (1996).
7In the actual experiments the situation is a bit more complicated because two different QH fillings

occur in different regions of the sample. The authors subtract this effect out.
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Goldman and Su argue as follows: For a negative potential Vg applied to the antidot,
the effect should be to create a region of positive charge surrounding it, i.e. a region
of quasiholes in the (electron) Laughlin state. We do not know the exact area, Sm, of
this region (though if we estimate its order of magnitude from the size of the antidot,
the number of flux quanta it contains should be several hundred). The tunneling current
should be controlled by the properties of the last occupied (electron) state, i.e. that closest
to the Fermi level. It is clear that the properties of this state should be periodic in
both B and Vg. However, the periodicity ∆B as a function of B should be controlled
simply by the periodicity of the electron states, so that ∆B = φ0/Sm; on the other hand,
the periodicity ∆Vg in Vg should be controlled by the total charge on the antidot (plus
surrounding hole), i.e. ∆Vg = e∗/CSm where e∗ is the unit in which the charge can change
and C is the capacitance per unit area between the antidot and the gate, which can be
reliably calculated from the geometry. Thus the unit of charge e∗ is given by

e∗ = Cφ0∆Vg/∆B. (9)

Using the calculated value of C Goldman et al. obtain, in the IQHE regime, a value of
e∗ = (0.97 ± 0.04)e, and in the ν = 1/3 FQHE regime, a value e∗ = (0.325 ± 0.01)e,
evidently consistent with e∗ = νe.

Franklin et al. obtain raw experimental results that are consistent with those of Gold-
man et al. However, they point out that the interpretation of ∆Vg as reflecting a funda-
mental “unit of charge” e∗ is questionable; one could equally well say simply that as soon
as the average charge in the region of the antidot has changed by 1/3 e, the MBWF relaxes
back to its original form. At this point it may become a matter of “theology”. . .

ν=1/3

ν=2/3ν=2/3

current
 lead

I I
IBV

Fig. 2:

The second group of experiments is on shot noise and has, again, been carried out by two
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groups, de Picciotto et al.8 and Saminadayar et al.9 Again, the experimental setups were
very similar: GaAs heterostructures with n ∼ 1011 cm−2, µ ∼ 106 cm2/V sec patterned to
make a “point contact” whose effective width is controllable by the gate voltage (cf. lecture
3); see Fig. 2. Fields from 0 to 15 T were used. Again the d.c. current IB that results from
tunneling between the edge states is measured, and moreover so is the noise spectrum of
this current. In the simplest theory of shot noise, if the elementary unit of charge is e∗, we
have for the noise per unit frequency bandwidth SI at zero temperature and for IB � I
the standard result

SI = 2e∗IB (10)

However, because of the difficulty of absolute measurements of noise one would prefer not
to rely too heavily on this. A more detailed theory gives (for IB � I, i.e. low transmission
of contact)

SI = 2e∗IB coth(e∗V/2kBT ) (11)

This has the advantage that one can read off e∗ also from the shape of the SI -V character-
istic at given T . Since the “transmitted” current I − IB is related to the voltage V by the
standard relation I−IB = (νe/h)V , one can plot SI directly against IB and deduce a value
of e∗. Both groups find that in the region of FQHE plateau corresponding to ν = 1/3,
both the eV � kBT value of SI and the shape of the SI(IB) curves are consistent with
the value e∗ = e/3, and clearly inconsistent with e∗ = e. Again, one might quibble about
whether this experiment really tells us that fractional charge “exists”, or merely about the
properties of the Laughlin wave function; and again, this controversy may or may not be
regarded as “theological.”

There has been a further set of experiments by the Goldman group over the last few
years that while still using an (anti)dot scheme have varied the experimental geometry:

(1) Camino et al., PRL 95, 246802 (2005): see Fig. 3. This experiment is more compli-
cated than the previous generation, since while the overall magnetic field is constant the
number density on the right and left sides (controlled by the voltage applied to the sub-
strates) is different, and thus the value of ν is different (≡ νB = 1/3 on the left, ≡ νC = 2/5
on the right). What is measured in this experiment is the 4-terminal resistance V2−3/I1−4,
which in view of the geometry may be called a “longitudinal” resistance Rxx. Clearly, for
νB = νC (i.e. a uniform value of ν) we should expect Rxx = 0; for unequal values the
prediction (not derived here) is, in the absence of the antidot

Rxx = (h/e2)(1/νC − 1/νB) = (−)h/2e2 (12)

The point of the experiment is that Rxx is measured as a function of both the magnetic
flux Φ applied to the antidot and the back-gate voltage applied to it (hence, if we know
the capacitance, of the charge Q accumulated on it). The result:

8Nature 389, 162 (1997).
9PRL 79, 2526 (1997).
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FURTHER DEVELOPMENTS ON QUANTUM ANTIDOTS
(a) Camino et al., PRL 95, 246802(2005):

Basic measurement is
of 4-terminal resistance
V2−3/I1−4(≡ Rxx) as f (Φ).
Without constriction,
theory predicts
Rxx = h

e2

(
1

νC
− 1

νB

)
= (−) h

2e2

Can also measure be-
haviour of Rxx as f (VBG)
(back-gate voltage ap-
plied to dot,controls no.

of electrons on dot), and thus, knowing capacitance, as a f (Q)
(charge on dot).
Principal results:

Rxx is periodic as f (Φ), with period ∆Φ = 5φ0← h/e
Rxx is periodic as f (Q), with period ∆Q = 2e.

Thus, ∆Q/∆Φ = νC.
(b) Camino et al., PRL 98, 076805 (2007):

ν = 1/3 everywhere. The blue
area is a dot, not an antidot ⇒
contains electrons. Measure
Rxx as f (Φdot, VBG).

Principal results:
Rxx is periodic as f (Φdot), with period ∆Φ = φ0

Rxx is periodic as f (VBG), with period ∆Q = e/3.

Fig. 3:

Fig. 4:

Rxx is periodic in Φ, with period ∆Φ = 5φ0
Rxx is periodic in Q, with period ∆Q = 2e

Thus ∆Q/∆Φ = 2/5 = νC .

POSSIBLE INTERPRETATION OF THE (ANTI)DOT EXPERIMENTS∗

Consider for definiteness the case of a ν = 1/3 QH fluid with
a central dot (not antidot). Experimentally, the flux periodicity
is φ0 and the charge periodicity is e/3 Thus, a change by φ0 in
flux corresponds to a change e/3 in (average) charge. Suppose
we require that the wave function of
a charge-1/3 quasiparticle encircling
the dot return to its original value ev-
ery φ0, without any extra phase fac-
tor. The total phase factor is thus

∆ϕ = ∆ϕAB + ∆ϕBerry = 2nπ

where
∆ϕAB = q

∆Φ

! =
eφ0

3! =
2π

3
hence

∆ϕBerry = −2π

3
(mod 2π)

so the exchange phase for 1 ! 2 (half of ∆ϕBerry) is π/3

Even if we accept these arguments, note that all experiments to
date which claim to give evidence for fractional charge/statistics
are done at temperatures T # ∆qp←bulk qp excitation energy
so they tell us either only about the GS or at best about the
properties of the (zero-excitation-energy) edge quasiparticles.
We have no information about the bulk quasiparticles!

*Goldman et al., Phys. Rev. B 71 153303 (2005)

Fig. 5:

A second experiment used the geometry shown in Fig. 4.
This is similar in spirit to the original 1995 experiment, but
with the difference that the area enclosed by the two paths
which are presumably showing the interference now contains
electrons rather than void. When the 4-terminal resistance
Rxx is plotted as a function of the flux Φ and back-voltage VBG (i.e. charge Q) applied to
the dot, one finds as previously that Rxx is periodic in Φ with period Φ0 and in Q with
period e/3.
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In a further theoretical paper10 Goldman et al. argue that their experiments are evi-
dence not only for fractional charge but also for fractional statistics. Their argument goes
roughly as follows: Consider for definiteness the case of a ν = 1/3 with a central dot (not
antidot) as in Fig. 5. Experimentally, the flux periodicity is φ0 and the charge periodicity
is e/3. Thus, a change by φ0 in flux corresponds to a change ≡ e/3 in (average) charge.
Suppose we require that the wave function of a charge −1/3 quasiparticle encircling the
dot returns to its original value every φ0, without any extra phase factor. That is

∆ϕ = 2nπ (13)

Now the total extra phase factor is the sum of an AB term ∆ϕAB = e∗∆Φ/~ = eφ0/3~ =
2π/3, and a Berry term ∆ϕBerry coming from the encirclement of the extra quasiparticles
induced on the dot by the flux change by φ0. Thus, from (13),

∆ϕBerry = 2nπ −∆ϕAB = −2π/3 (mod 2π) (14)

so the exchange phase, which is half11 of ∆ϕBerry, is π/3 as expected theoretically.
Thus far, everything seems consistent with the ”standard wisdom”, including the hy-

pothesis that for ν = p/q, p 6= 1, the quasiparticle charge e∗ is e/q rather than ep/q. How-
ever there are at least two experiments12 which cast doubt on this conclusion. These are
shot-noise experiments conducted on the plateaux corresponding respectively to ν = 2/5
and to ν = 2/3, and in both cases the data indicate that while at high temperature the
effective charge of the carriers is indeed e/q, at low temperatures it is ep/q (with a tran-
sition regime when it appears to vary smoothly from one to the other as a function of
temperature). This is as far as I know not currently understood: for a recent discussion
see Snizhko, Low Temp. Phys. 42, 60 (2016). Note that while in bulk the ν = 2/3 state
should be the ”mirror image” of the ν = 1/3 one, this is not so near the sample edge, so if
the shot noise is dominated by the edge states it is not so surprising that the behavior of
the quasiparticles in the two states is qualitatively different.

ARE THE EXPERIMENTS EVIDENCE FOR FRACTIONAL
CHARGE/STATISTICS?
Problem : most of the “obvious” experiments need
only the FQHE or the AB effect for their explanation!
Consider e.g. periodicity of proper-
ties of a ring in AB geometry. Sup-
pose ∃ qp’s of charge e∗ = (e.g.) e/3
in the ring. Prima facie, might expect
period to be h/e∗ = 3φ0← h/e.
↑: Gauge invariance ! Suppose

Ĥ =
∑

i

(
p̂
˜
i − eA

˜
(ri)

)2
/2m

↑
AB vector potential.,=(ϕAB/2π)θ̂

+
∑

i

U(ri) +
1

2

∑

ij

V
(
r
˜
i − r

˜
j

)

and solution of TISE must satisfy SVBC ← “singlevaluedness
boundary condition”

ψ(θi + 2π : {Rj}) = ψ(θi : {Rj})∀i (electrons)

If we perform a G.T.,

ψ → ψ′ ≡ ψ exp−ie
∑

i

∫ r
˜i

0 A
˜
(ri) · dl

˜
/!

the new Hamiltonian is

H ′ =
∑

i p
2
i /2m +

∑
i U(r

˜
i)− 1

2

∑
ij V (r

˜
i − r

˜
j) ( *= f (Ȧ

˜
))

and the SVBC becomes

ψ(θi + 2πi{Rj}) = exp 2πi(ϕAB/ϕ0)ψ(θi : {Rj})

⇒ all properties periodic with period ϕ0.(Byers-Yang Theorem)
Thus, can have periodicity h/e∗ only if e∗ = ne, n integral (eg.
Cooper pairs), not if e.g. e∗ = 1

3e!

Fig. 6:

Let’s now stand back and try to assess how far the exper-
iments cited are evidence for fractional charge and/or frac-
tional statistics. The basic problem is that, at least at first
sight, most of the experiments seem to need only the FQHE
itself plus the standard AB effect. Let’s consider e.g. the
question of the periodicity of the properties of a simple ring

10PRB 71, 153303 (2005).
11Recall that 2 exchanges = 1 encirclement.
12Chung et al., PRL 91, 216804 (2003): Bid et al., PRL 103, 286802 (2009).
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(annulus) with an AB flux through it (Fig. 6). Suppose the
electrons in the ring are in the FQH state corresponding to some fractional charge e∗, e.g.
e/3. Then prima facie one might expect the basic periodicity of the properties of the ring
to be h/e∗ = 3φ0, so that they would not in general be periodic in φ0. However, this
conclusion would contradict a rigorous theorem (the so-called Byers-Yang theorem) to the
effect that all properties of such a ring must indeed be periodic with period φ0. I now give
a brief demonstration of this result:

With the AB geometry, the flux ϕAB is completely taken into account by the replace-
ment in the Hamiltonian of the canonical momentum p by p− eA, i.e.

Ĥ =
∑
i

(pi − eA(ri)
2)/2m+

∑
i

U(ri) +
1

2

∑
ij

V (ri − rj), A(ri) = (ϕAB/2π)θ̂ (15)

which must be solved subject to the “single-valuedness boundary condition” (SVBC)

ψ
(
θi, {Rj}

)
= ψ

(
θi + 2π, {Rj}

)
(j 6= i) (16)

(in words: if we take a single electron around the ring, leaving all others untouched, we
must recover the original wave function). If now we perform a gauge transformation,

ψ → ψ′ ≡ ψ exp−ie
∑
i

∫ ri

0
A(ri) · dl/~ (17)

then the new Hamiltonian is

Ĥ ′ =
∑
i

(p2
i /2m) +

∑
i

U(ri) +
1

2

∑
ij

V (ri − rj) (18)

which is independent of A (hence of ϕAB), while the SVBC becomes

ψ(θi + 2π, {Rj}) = exp 2πi(ϕAB/φ0)ψ(θi, {Rj}) (19)

where the exponential factor is of course periodic with period φ0. Hence all energy levels
and wave functions must be rigorously periodic with period φ0, from which immediately
follows the Byers-Yang theorem.

However, there is a subtlety:13 By bend-
ing the 2 edges of a Corbino disk and joining
them, we can form a torus (see Fig. 7). Now
there is an exact result of Wen and Niu:14 for
the FQHE with ν = 1/q on a torus, there are

13Thouless and Gefen, PRL 66, 806 (1991).
14Phys. Rev. 41, 9377 (1990).
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↑: However, there is a subtlety*:

By bending the 2 edges of
Corbino disk and joining them,
form torus.
Recall exact result of Wen + Niu†:

for FQHE with ν = 1/q
↑

integer

on torus,

∃ q groundstates which are degenerate (+ mutually inaccessi-
ble) to o(e−L/ξ) ξ ∼ magnetic length lM . How does this result
translate to Corbino-disk geometry?

Picture consistent with Byers-Yang theorem:

For all but the slowest sweeps,
system follows . For very
slowest sweeps, system follows

⇒ at very low voltages,
FQHE should ⇒ IQHE!
Probability of following

∼τ
↑

period of sweep∼φ0/V

∆E← level splitting

∼ exp−L/ξ

Hence, VC ∼ exp−L/ξ ⇒ not practically visible for “thick” ring

∗Thouless + Gefen. PRL 66, 806 (1991)
†Phys. Rev. 41, 9377 (1990)

Fig. 7:

q groundstates that are degenerate (and mutu-
ally inaccessible) to O(e−L/ξ) where ξ ∼ mag-
netic length lM . How does this result translate
to the Corbino-disk geometry?

A picture consistent with Byers-Yang theorem is the following: For all but the slowest
sweeps, system follows - - - giving a periodicity of 3φ0. For the very slowest sweeps, system
follows —; so at very low voltages, FQHE should ⇒ IQHE! The probability of following
– rather than - - - is of order τ∆E where τ ∼ φ0/V is the period of the sweep and ∆E ∼
exp−L/ξ is the level splitting. Hence, the part of the Hall resistance which is periodic
with period φ0 is of order exp−L/ξ, so not practically visitle for a “thick” ring.

Fig. 8:

But, now consider a Corbino disk with a constriction (Fig. 8: this is close to geom-
etry of the real shot-noise experiments). Even if the system (tries to) follow the dotted
curve, interaction with its “environment” (e.g. phonons) may cause it to drop back to the
lowest state for that Φ. This process is irreversible, so generates nonzero V and nonzero
“backscattered” current IB. Both V and IB will be characterized by shot noise, and in-
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spection of fig. 8 shows that this is periodic with period 3φ0 (not φ0). The $64K question
is: Is the quasi-periodicity alone sufficient to generate the quantitative formula (confirmed
by experiment) for shot noise, with e∗ = 1/3?

If yes, then experiments don’t tell us anything about charge/statistics of quasiparticles,
even edge quasiparticles!


