
PHYS598PTD A.J.Leggett 2016 Lecture 20 The ν = 5/2 fractional quantum Hall effect 1

The ν = 5/2 fractional quantum Hall effect 1

As we have seen, the vast majority of quantum Hall plateaux observed experimentally,
whether in Si MOSFET’s, GaAlAs-GaAs heterostructures or graphene, occur either
at integral values of the filling factor ν ≡ Ne/Nφ (Ne ≡ number of electrons, Nφ ≡
number of flux quanta) (IQHE) or at rational fractions ν = p/q with q an odd integer
(FQHE). Within the composite-fermion picture, the FQHE is explained by setting p = k,
q = 2nk±1 and viewing the FQHE as derived from the IQHE with ν = k by attaching to
each electron 2n imaginary “flux quanta”; or, what is equivalent, multiplying the IQHE
wave function by (zi − zj)

2n. However, as we have seen in lecture 19, in the case of
ν = 1/2 the same procedure yields the conclusion that the “parent” IQHE state should
correspond to ν = ∞, i.e. it should be a Fermi liquid. Moreover, as we will see in the
next lecture, experiments, in particular on magnetic focusing, seem consistent with this
point of view.

Prima facie, one would expect the states which occur at ν = n + 1/2 in traditional
QHE systems such as GaAlAs-GaAs heterostructures2 to differ from that at ν = 1/2
only by having n Landau levels completely filled; the situation in the (n + 1)-th LL
should be similar to that in the LLL for ν = 1/2. IT was therefore a considerable
surprise when it was discovered in 1987 that a QH plateau occurs, with all the standard
characteristics, at ν = 5/2. This plateau seems to be quite robust, with a gap ∆ which in
the highest-mobility samples reaches ∼ 500 mK; at temperatures � ∆ the longitudinal
resistance vanishes within exponential accuracy, and the Hall conductance appears to
be quantized at (5/2) e2/h to high accuracy, thereby excluding the possibility that the
plateau is a case of the standard FQHE with ν = 32/13 or 33/13. So it really does look
like a “proper” FQHE state.

Before examining the ν = 5/2 state in detail, let’s digress for a moment to survey the
general behavior of a 2D electron gas in a strong magnetic field as a function of the filling
factor ν ≡ nh/eB (n ≡ areal density). We recall that in a simple case such as GaAs
heterostructures where there are no complications due to valley degeneracy etc., the
highest Landau level occupied (call it N) is the integer part of ν/2; thus, in particular,
occupation of the LLL (only) corresponds to 0 < ν 6 2, while N = 1 corresponds to the
range 2 < ν 6 4.

It turns out that within the LLL, i.e. for ν 6 2, the system behaves much as
predicted by the theory of lectures 16-20; in particular, plateaux with Σxy = νe2/h are
always centered around the corresponding odd-denominator filling fractions ν, a “Fermi-
liquid-like” state occurs at the even-denominator filling factor ν = 1/2 (and probably
also at ν = 3/2, 3/4 and 1/4, though these cases have been less investigated). Moreover,
when the system is subjected to a tilted magnetic field, the only effect seems to be to
replace the total field by its component perpendicular to the plane of the 2D electron

1A comprehensive survey of the experimental aspects is given by R. Willett, Reps. Prog. Phys. 76,
076501 (2013)

2In single-layer graphene, it is believed that a QH plateau would occur at ν = n + 1/2 if both the
spin and valley degeneracies were split, but this has to do with the special nature of the Dirac spectrum
and is best regarded as a variant of the IQHE.
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gas, indicating that any orbital3 effects of the parallel component are negligible.
Things are very different in the range ν > 2(N > 1): see Willett, ref cit., section

3.4 In the first place, one finds so-called “reentrant” behavior, i.e. there are plateaux
corresponding to integral values of Σxy/(e

2/h), but occurring around nonintegral
values of the filling factor ν (see Willett, ref. cit., fig. 5); these are usually understood
as indicating some kind of phase separation, e.g. into a “striped” phase. A second
unexpected feature which appears to be restricted to the range ν > 4(N > 2) is that
even in a perpendicular field, the (in-plane) resistivity close to half-filling (ν ∼= n+ 1/2)
shows very strong anisotropy, by a factor up to ∼3,000; see Willett, ref. cit. fig.
4. This effect, while it is very sensitive to a parallel component of the magnetic field5,
which in certain circumstances can actually reverse the axis of the anisotropy, appears
to be intrinsic to the sample in zero parallel field – a puzzling observation, since GaAs
has the cubic ZnS structure and should ideally be completely isotropic in the xy-plane;
it strongly suggests the formation of some kind of “stripes” whose orientation is fixed
by small symmetry-breaking effects.

In retrospect it is perhaps not so surprising that the behavior for N > 1) (and
particularly for N > 2) is more complicated than that of the LLL: In the latter case,
if we adopt the symmetric gauge, the radial dependence of the single-electron wave
functions has a simple Gaussian form, while for N > 1 it is a more complicated Hermite
polynomial with zeroes; thus the Coulomb interaction (whose Fock term, we recall, is
attractive for parallel spins) may be able to organize rearrangements which are not
available in the LLL. Indeed, theorectical work predating the experiments anticipated
such rearrangements.

While for N > 2(ν > 4) no standard FQHE has to date been seen, the second LL
(N = 1, 2 < ν 6 4) shows a complicated pattern: along with the “reentrant” quantum
Hall effect described above, there appear several plateaux which appear prima facie to
have the “standard” FQHE structure, not only as observed at ν = 5/2, but also at
2 + n/3 and 2 + n/5 (see Willett, ref. cit., fig 5). It appears that the second LL is in
some sense a “battleground” between the traditional “composite-fermion” behavior of
the LLL and the Coulomb effects which appear to dominate for N > 2.

With this in mind, let us now focus specifically on the ν = 5/2 state. We first review
some of its basic properties:

1. Robustness: both plateau in RH and the zero of Rxx extend over
a range ∼ 0.1 in ν. (in the highest-mobility samples)6

2. Excitation gap ∆: this is measured by fitting Rxx to Rxx ∼
const. exp−∆/T . ∆ appears to be a strong (∼ exponential) func-
tion of disorder: the highest measured value to date ∼ 0.45 K, and
extrapolation to zero disorder (µ→∞) gives ∆ ∼ 0.6K (∼ 0.006Vc)
(Vc = e2/4πεε0lM) (Note: Vc is the natural unit to measure qp gap,
as ∆qp ≡ 0 for the FQHE if Vc is neglected).
3. Magnetic field dependence: If B⊥ (hence ν) is held constant, and B‖ is varied, ∆qp

3Of course the Zeeman splitting remains proportional to the total field.
4It should be noted that much of the behavior described occurs only at T . 50mK, so that the data

is quite recent.
5Lilly, et al., PRL 83, 824 (1999)
6See fig. 1 of Xia et al., PRL 93, 176809 (2004).
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decreases linearly7 with B‖, extrapolating to 0 at B‖ = 1.5−2.5 T. In the same geometry,
ν = 7/2 FQHE shows similar behavior, but for ν = 7/3 (“Laughlin” state) ∆qp increases
with B‖.
4. At least to date, the only system in which the ν = 5/2 QH plateau has been seen

is GaAs heterostructures: here typical parameters are ns ∼ 1 − 3 × 1011 cm−2 (so B ∼
2− 6 T), µ ∼ 3× 107 cm2/V sec, T ∼ 5− 100 mK.

In trying to understand what is going on at ν = 5/2 it seems very natural to make
(as we have above) the default assumption that the LLL is filled both for ↑ and ↓ spin
states; then prima facie the behavior in the n = 1, ↑ spin LL should be identical to
that in the n = 0, ↑ spin LL for ν = 1/2. However, this need not necessarily be the
case, because as already observed in view of the different behavior of the wave functions
for n = 0 and n = 1 the relevant matrix elements of the Coulomb interaction could
be appreciably different in the two LL’s. An immediate question which arises then is:
given that the LLL is completely filled for both spins, i.e. unpolarized, is the n = 1
LL spin-polarized or not? As we shall see below, the answer to this question is crucial
to the identification of the nature of the wave function and thus to the possibility of
using the ν = 5/2 FQHE for TQC; unfortunately, it has not so far proved possible
to determine the answer experimentally. Originally, it was found that the plateau is
suppressed by a substantial magnetic field component parallel to the plane, and the
most obvious explanation is that the relevant state is a spin singlet (hence energetically
disadvantaged by the Zeeman field). However, subsequent experiments, combined with
numerical theory, tend to suggest that the effect is actually of orbital origin; because the
parallel component of the magnetic field affects the motion perpendicular to the plane,
it can change the relevant Coulomb matrix elements. For the moment, let us assume
that the ν = 5/2 state seen in GaAs heterostructures is in fact fully spin polarized (we
will return to this question below) and ask what is its nature? In particular, why does
a QH system at ν = 5/2 not behave, as it seems to at ν = 1/2, as a “disguised” Fermi
liquid (of composite fermions)?

A relevant question is: What do we know about the possible instabilities of a Fermi
liquid? There are of course a great many, but most of them, such as crystallization,
tend to occur either not at all or at temperatures comparable to the Fermi temperature,
which for GaAs heterostructures at n = 1011 cm−2 is ∼ 30 K. The obvious instability
which occurs for arbitrary weak interactions of the right sign and thus at arbitrary
low temperatures is Cooper pairing, which of course in a system of real particles leads
to superconductivity (if charged) or superfluidity (if neutral). This consideration led
Moore and Read8 to conjecture that

the ν = 5/2 QH plateau corresponds to a Cooper-paired state of composite fermions.

If this is true, then it is generally believed that the elementary excitations will be non-
abelian (Ising) anyons, which is what makes this possibility so interesting in the context

7Dean et al., PRL 101 186806 (2008).
8Nuc. Phys. 360, 362 (1991).
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of TQC.
Let’s try to make this hypothesis a bit more quantitative. According to the composite-

fermion hypothesis, the correct groundstate for a given value of ν = k/(2nk±1) is given
by taking the non-Gaussian part of the wave function of electrons at ν = k, multiplying
by (zi − zj)2n (“adding 2n flux quanta to each electron”) and readjusting the Gaussian
part so that the magnetic length lM which comes in refers to the actual magnetic field B
(not B∗). Now, consider the case ν = 1/2. This corresponds to the choice k →∞, n = 1;
since in this limit B∗ = 0, the wave function of a set of noninteracting electrons is just the
filled Fermi sea for given value of ns and complete spin polarization |FS〉. Consequently,
according to the above prescription we should have apart from normalization

Ψ
(normal)
ν=1/2 =

∏
ij

(zi − zj)2 exp−
∑
i

|zi|2/4l2M |FS〉 (1)

where the |FS〉 component guarantees the correct antisymmetry under the exchange
i↔ j. The assumption which seems to be implicit in much of the theoretical literature
is that a similar expression, multiplied by the appropriate Slater determinants for the
completely filled (spin singlet) LLL wave function, would be adequate also for the ν = 5/2
state were it not for the effect of interactions. In the following I will not write out the
part of the wave function which refers to the LLL explicitly.

So, if eqn. (1) is the correct representation of a normal Fermi sea of composite
fermions, what is the corresponding representation for a BCS-paired state? The obvious
answer is

Ψ
(paired)
ν=1/2 =

∏
ij

(zi − zj)2 exp−
∑
i

|zi|2/4l2M |BCS〉 (2)

where |BCS〉 is the Cooper-paired state of weakly interacting fermions at the relevant
density9. Now, on our assumption that the ν = 5/2 state (as well as the ν = 1/2 state)
is completely spin-polarized, the Fermi antisymmetry requires that the pairing takes
place in a state of odd relative orbital angular momentum l, and the default option is
l = 1 (p-state). Moreover, the state must be two-dimensional.10 This still does not
specify the state uniquely; for example, the order parameter could be of the form Akx
(or Aky), which breaks rotational invariance but not time-reversal invariance. However,
our general experience with BCS pairing suggests that in a rotationally invariant system
it is usually energetically advantageous to make the energy gap (which is proportional
to the modulus of the order parameter) as uniform as possible over the Fermi surface.
This suggests that we should choose for the OP

∆(k) = ∆0(kx ± iky) (3)

so that even though the magnetic field B∗ acting on the composite fermions is zero,
their state still breaks time reversal invariance. In the literature a state of the form (3)

9From now on we shall always implicity assume that the total number of particles N is even.
10Of course, as we have seen in lecture 9, no true superfluid ODLRO can survive in 2D. However, we

may assume, at least for the moment, that we are below the KT transition, so that the lack of ODLRO
does not affect the qualitative behavior.
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is referred to as a “p + ip” state: note that the “energy gap” is independent of k and
equal to ∆0.

The crucial question, now, is: What is the explicit form of the groundstate wave
function |BCS〉 which corresponds to the choice (3)? Actually, as we shall see in lecture
28, the answer does not seem to be unique in the thermodynamic limit (a fact which has
not been widely appreciated in the QH literature). However, there is a particular answer
which has been widely given in the literature on superfluid 3He and other (non-FQH)
condensed matter systems, namely that the wave function is of the standard BCS form,
with the coefficients uk and vk having the right angular dependence for a p + ip state.
This is, explicitly,

|BCS〉 = |BCS〉standard ≡
∏
k

(uk + vka
†
ka
†
−k)|0〉 (4)

where |0〉 is the physical vacuum, the spin suffix ↑ is omitted for simplicity, and the
coefficients uk and vk are given by

uk =
1√
2

(1+εk/Ek), vk =
1√
2

(1− εk/Ek) exp iφk

Ek ≡
√

(εk − µ)2 + ∆2
0

(5)

with µ the chemical potential. It is easily verified that the expectation value of the total
orbital angular momentum L in the state described by |BCS〉standard is N~/2.

Should we simply insert |BCS〉standard in the conjecture (??) for the groundstate of
the ν = 5/2 QH system? There is a problem here, since we do not know a priori the
value of the effective Coulomb matrix elements for the composite-fermion states and
hence cannot calculate the gap magnitude ∆0. However, since the order of magnitude

of the Coulomb energy (e2/4πεε0r0, where r0 ∼ n−1/2s ) is quite comparable to the Fermi
energy and may in fact be larger, it seems reasonable to suppose that ∆0 is of order
εF and thus that the pair radius ξ of the pairs in the state |BCS〉standard is of order
of the interparticle spacing (or the magnetic length, which for ν ∼ 1 is essentially the
same thing). But there is little reason to believe that the composite-fermion idea works
quantitatively on this kind of scale. Consequently, it may seem sensible to insert in (2)
not the full real-space wave function derived from (4), but only the form which the latter
takes at long distances (|ri − rj | � k−1F , ξ). As we shall see in lecture 28, this has the
form of the “Pfaffian”

Pf

(
1

zi − zj

)
≡ 1

z1 − z2
1

z3 − z4
1

z5 − z6
. . .− 1

z1 − z3
1

z2 − z4
1

z5 − z6
. . .+ . . .− . . . (6)

i.e. it is the completely antisymmetrized version of the expression
∏N

i=1
j=i+1

(
1

zi−zj

)
.

Thus, finally, the ansatz of Moore and Read for the ν = 5/2 QH state is up to
normalization (presumably omitting the filled LLL)

ΨMR{zi} =
∏
i<j

(zi − zj)2 Pf
1

(zi − zj)
exp−

∑
i

|zi|2/4l2M (7)
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and it is on this conjectured form that most of the work on the possible implementation
of TQC in this system has been based. Note that apart from the Pfaffian factor, ΨMR

is just the Laughlin factor for ν = 1/2; however, the Pfaffian factor is of course essential
to give the correct antisymmetry.

Despite this, it is important to note that when we are counting powers of zi, this
factor only adds one for each added pair of particles, whereas the Laughlin factor adds
4N ; thus the former is negligible in this context in the thermodynamic limit.

Although the ansatz (7) is an informed guess, it can be made plausible by two
considerations:

1. It is the exact groundstate of the artificial Hamiltonian

Ĥ = +V0
∑
ijk

δ(2)(ri − rj)δ
(2)(rj − rk)

(
δ(2)(r) ≡ δ(x)δ(y)

)
(8)

2. Numerical studies show that it has a substantial overlap with the exact groundstate
of some rather more realistic model Hamiltonians.

It is sometimes said in the literature that the MR state (7) is the exact analog of the
superfluid A1 state of liquid 3He. This is not strictly true, since as well as the paired up-
spin component 3He-A1, also has an unpaired down-spin component. It would be true
for (hypothetical) totally spin-polarized 3He-A1, with no down-spin component. Note
by the way that while the ν = 1/2 state would appear to be symmetric with respect to
particles and holes, the Hamiltonian (8) breaks the particle-hole symmetry, and since
the MR state is an exact eigenfunction of it, it must do the same.

Let’s briefly review some other possible identifications of the ν = 5/2 QH state.11

1. The (331) state

Like the MR state, this is a triplet-paired state of the composite fermions; however,
unlike that state (which corresponds to S = 1, Sz = 1) this one corresponds to
S = 1, Sz = 0 and hence has no net spin polarization in any direction. The explicit
form of this state in terms of the electron coordinates is

Ψ =
∑

{σi}:
∑

i σi=0

∏
i<j
σi=σj

(zi − zj)3
∏
i<j
σi 6=σj

(zi − zj)1 exp−
∑
i

|zi|2/4l2M (9)

In words: the correlation of any two parallel-spin electrons vanishes as r3, but
correlation of any two anti-parallel spin electrons vanishes only as r.

The 331 state is the exact analog of the A phase of liquid 3He (which has no net
Cooper pair polarization).

In terms of the original electron coordinates, ΨMR and Ψ331 look totally different,
and in particular appear to have a different topology. But when expressed in terms

11The most readable account of this subject I know is T-L. Ho, PRL 75, 1186 (1995).
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of the composite fermions (see Ho, ref. cit.), it turns out that the only difference
is in the spin wave function χµν !

χMR =

(
1 0
0 0

)
χ331 =

(
0 1
1 0

)
(10)

Ho exploits this fact to show that Ψ331 can be deformed continuously into ΨMR

without changing “total” g(r12) ≡ 〈ρ(r1)ρ(r2)〉, hence without changing Vc. (Cf.:
non-metastability of circulating state of spin-1/2 BEC in annulus). The apparent
paradox thereby arising is discussed in detail in section 11 of the paper by Nayak
and Wilczek (ref. (14) below)

2. The “anti-Pfaffian” state.12

If one could neglect completely LL mixing, particle-hole conjugation is an exact
symmetry for a half-filled LL. But ΨMR breaks this symmetry, since it is the exact
GS of a Hamiltonian which is not particle-hole symmetric. So there must exist
an “anti-Pfaffian” state (ΨAP) which is the particle-hole conjugate of ΨMR. For
exact particle-hole symmetry it must be degenerate with ΨMR, but LL mixing could
stabilize either ΨAP (or ΨMR). To the best of my knowledge, no-one has formulated
the AP wavefunction explicitly in terms of composite fermion coordinates, so one
cannot immediately compare it with the MR or 331 states. However, studies of
the edge states using bosonization predict different values for the (“universal”)
thermal conductance, etc. (see below).

3. Other possible identifications.

In the literature there have been yet other suggestions for the nature of the ν = 5/2
QH state: the “K = 8” state, the “U(1)× SU2(2)” state and others. I will not go
into the details here

Let’s now turn to the important but rather confusing issue of the charge and statistics
of the MR states and its competitors. I will try to give a plausible argument only for
the MR and (331) states, and just quote the results for the others.

For a first pass, let us look at the elementary excitations of a (p + ip) 2D Fermi
superfluid. These are (mostly, cf. lecture 28) of two types: simple fermionic BCS quasi-
particles, with a minimum excitation energy equal to the gap ∆0, and vortex-antivortex
pairs, whose characteristic energy is strongly temperature-dependent as discussed in lec-
ture 10. Now for a strictly 2D system with ∆ ∼ εF, the fraction of excited quasiparticles
at TKT is fairly small (Problem), so let us focus on the vortex-antivortex pairs. Suppose
we want to create a vortex at the origin. In a BCS superfluid the way to do this is sim-
ply to multiply the wave function by a factor of the form

∏N
i=1 f(|zi|) exp(iφi/2), where

φi ≡ arg zi and f(|zi|) is some function which tends to zero as |zi| → 0. The factor of 1/2
in the phase corresponds to the well-known fact that in a neutral superfluid such as 3He
the vorticity is quantized in units of h/mp rather than h/m, where mp ≡ 2m is the mass

12Levin et al., PRL 99, 236806 (2007): Lee et al., ibid. 236807.
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of a Cooper pair. The simplest form of f(|zi|) which preserves the analyticity of the
wave function up to a cut is f(|zi|) = |zi|; thus, a vortex at the origin might be created

simply by multiplying the groundstate wave function by
∏N
i=1 z

1/2
i , and correspondingly

a vortex at the position specified by the complex variable x + iy ≡ η0 would then be
created by application of

∏N
i=1(zi−η0)1/2. Arguing along these lines, we would conclude

that a plausible ansatz for a single quasiparticle (actually quasihole) in a system whose
GS is described by the MR wave function is

Ψqh =
N∏
i=1

(zi − η0)1/2ΨMR{zi} (11)

Note that a simple power-counting argument (cf. below) would then show that the
quasiparticle charge is e/4.

Whether (11) is correct or not13 may be a matter of theology, since it actually turns
out that it is impossible to create a single isolated vortex in a 2D (p+ip) Fermi superfluid;
for essentially topological reasons one must have either an even number of vortices, or an
edge state which plays the same role as a vortex. So the physically meaningful question
in the case of the ν = 5/2 QH state is, what is the correct form of the wave function for
two quasiholes? The ansatz made by Moore and Read (their eqn. (5.9), for the special
case q = 2, i.e. ν = 1/2) takes the rather complicated-looking form.

Ψpair(z1z2..zN : η1, η2) = (η1 − η2)−1/4×

∑
σεSn

sgnσ

N/2∏
k=1

[(zσ(2k−1) − η1)(zσ(2k) − η2) + (η1
−→←η2)

(zσ(1) − zσ(2))....(zσ(N−1) − zσ(N)).
(12)

×
∏
i<j

(zi − zj)2exp− 1

4

∑
i

|zi|2]

where η1, η2 denote the quasihole positions and σ is any permutation of the zi’s, and
sgn σ is the parity of the number of interchanges involved; the notation zσ(i) means zj
where j is the index obtained from i by the permutation σ. Several things about eqn.
(12) should be noted:

1. It is correctly antisymmetric in the zi’s but (apart from the prefactor, on which
more below) symmetric in the ηi

2. It is (unlike (11)) analytic in the zi, but cannot in general be written in the form
of f(zi, zj)×ΨGS

13In the literature it is usually stated that the single quasihole creation operator is
∏N

i=1(zi − η0) as
for Laughlin states, but it is not clear that this statement has any real meaning.
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3. The product over k runs only up to N/2, not up to N . Hence the number of extra
powers of zi by comparison with the groundstate is N , not 2N (remember that the
denominator introduces only a power 2, which is negligible in the thermodynamic
limit).

4. It may be verified that if we create four of the pairs described by eqn. (12) (with
an appropriate generalization of it, see below) at the same two points η1, η2 and
follow the procedure employed in lecture 18 for the Laughlin states, we recover the
groundstate (eqn. (7) with 2 extra electrons. However, it is essential to appreciate
that this is only true because we have explicitly included the prefactor (η1−η2)−1/4,
which is thus seen to be an essential element in the ansatz (12).

From the above considerations it is straightforward to infer the charge and statistics
of the quasiparticles of the MR state as generated by eqn. (12). The charge follows
intuitively from power-counting according to (3) above: Since each pair of quasiholes
adds a power N , while addition of an extra pair of electrons requires 4N extra powers,
the charge e∗ of a single quasihole must be e/4. A more rigorous demonstration of this
result follows from observation (4) above. Thus

e∗MR = e/4 (13)

As we will see below, this result is not unique to the MR state.
What of the quasihole statistics? Suppose we encircle the (stationary) quasihole 2

by quasihole 1, in the usual adiabatic way. Then the factor zi−η1 in the numerator give
rise, just as in the Laughlin case, to a phase factor exp 2πiν = −1; so at first sight the
quasiholes would appear to behave as simple fermions. However, we need to remember
the overall prefactor (η1 − η2)−1/4 (which we recall had to be there to guarantee the
correct cancellation of 4 quasiholes by 1 electron). When this is taken into account the
correct “encirclement phase” is 3π/2, which is equivalent to (−)π/2, so the exchange
phase is π/4.

However, an exchange phase of π/4 is not in itself inconsistent with Abelian statistics,
so let us now examine this point. Consider a 4-qh state (i.e. 2 qh pairs).14 Start with
the somewhat artificial case of N = 2, then a possible wave function. is

Ψ4 qh = Ψ(L)(z1 − z2)−1 × {(z1 − η1)(z1 − η2)(z2 − η3)(z2 − η4)}+ (z1 ↔ z2) ≡ (12)(34)
(14)

But at first sight there are two other possibilities, namely (13)(24) and (14)(23). How-
ever, we now note the identity

(12)(34)− (13)(24) = (z1 − z2)2(η1 − η4)(η2 − η3) (15)

from which it follows that

(12)(34)(η1−η2)(η3−η4)+(13)(24)(η1−η3)(η2−η4)+(14)(23)(η1−η4)(η2−η3) = 0 (16)

14Nayak and Wilczek, Nuc. Phys. B 479, 529 (1996).
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i.e. only 2 linearly independent functions. This result also holds for the generalization
for N > 2:

Ψ4 qh = Ψ
(L)
N Pf

{
(13)(24)

z1 − z2
− (13)(24)

z3 − z4
. . .

}
(17)

and it can be generalized to the case of 2n quasiholes :

for 2n quasiholes, 2n−1 linearly independent states

NW exhibit an explicit form of a possible choice15 of basis states for n = 2 (their eqns.
(7.17-18)):

Ψ
(0)
4 qh =

(η13η24)
1/4

(1 +
√

1− x)1/2

(
Ψ(13)(24) +

√
1− xΨ(14)(23)

)
Ψ

(1/2)
4 qh =

(η13η24)
1/4

(1−
√

1− x)1/2

(
Ψ(13)(24) −

√
1− xΨ(14)(23)

)
x ≡ η12η34

η13η24
η12 ≡ η1 − η2, etc.

(18)

Let’s take |x| � 1 i.e.

so that

Ψ
(0)
4 qh = 2−1/2(η13η24)

1/4
(
Ψ(13)(24) + Ψ(14)(23)

)
Ψ

(1/2)
4 qh = 2−1/2(η13η24)

1/4
(
Ψ(13)(24) −Ψ(14)(23)

) (19)

Then it is clear that interchange of 1 and 2 (or 3 and 4) affects only the prefactor, so gives
a phase factor exp iπ/4. It would thus be natural to take the charge e∗ of a quasihole to
be e/4, as we already deduced.

However, using eqn. (16) we see that interchange of (e.g.) 2 and 3 gives a nontrivial

rotation16 in the space of Ψ
(0)
0 and Ψ(1/2). Thus, the states Ψ

(0)
4 qh and Ψ

(1/2)
4 qh can in

principle be used as the basis for a qubit. More generally,

2n anyons → n qubits

15That the explicit phase factor is in the numerator rather than, as in eqn. (12), in the denominator
merely changes the encirclement phase from 3π/2 to π/2 and is irrelevant to the physical results.

16Confirmed by numerical calculations: Tserkovnyak and Simon, PRL 90, 016802 (2003).
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At this point let us note that the (331) state is much less exotic. In fact, it is
essentially a product of simple Laughlin states of each spin population corresponding to
ν = 1/4, with the only difference being that to get the statistics right one of the 4 powers
of (zi−zj) has to involve correlation with the opposite spin population. When viewed in
this way, it is clear that simple power-counting gives the excitations a fractional charge
e∗ = e/4 just as in the Pfaffian case; however, encirclement of one quasiparticle by
another (whether of the same of opposite spin species) proceeds just as in the Laughlin
case and gives (only) a phase factor exp iπ/4. Thus the statistics of the (331) phase is
abelian.

———————————
We now turn to the question: How do we tell experimentally whether the observed

ν = 5/2 QH state is indeed the MR state (as numerical studies tend to suggest) or is
one of the competing states ((331), antiPfaffian etc.)? It turns out that all the suggested
identifications predict17 that the effective charge e∗ is e/4, but they predict different
values for the “Coulomb exponent” g which controls some of the properties associated
with edge states, e.g. temperature-dependence of tunnelling characteristics.

Ansatz Spin-polarized? e∗ g abelian/nonabelian

MR yes e/4 0.25 nonabelian

AP yes e/4 0.5 nonabelian

331 no e/4 0.375 abelian

K = 8 yes(?) e/4 0.125 abelian

U(1)× SU2(2) yes e/4 0.5 nonabelian

Experiments designed to identify the nature of the ν = 5/2 FQHE state

1. Is it spin-polarized?
This question is discussed in some detail in section 4 of the Willett review. As we

have seen, the early observation that a sufficiently large in-plane magnetic field destroys
the ν = 5/2 QH plateau was originally taken as evidence for spin singlet pairing (which
would be destroyed via the Zeeman effect); however subsequent experiments have sug-
gested that the effect of the field is more likely to be via its orbital interaction, so this
argument is no longer widely believed. Other experiments designed to determine the spin
polarization include electrically detected NMR, polarization-sensitive photoluminescence
and acoustic resonance measurements at temperatures above that for formation of the
QHE plateau (which in effect measure the Fermi wave vector and thus, knowing the
areal density, the spin polarization). Willett’s conclusion is that the evidence from these
experiments for a completly spin-polarized state, while suggestive, is not conclusive.

2. Shot-noise experiments

17I suspect this follows from rather general topological considerations, see below.
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1. Dolev et al., (Weizmann Institute) Nature 452, 829 (2008). Sample: GaAs-
AlGaAs heterostructure. (Fig 2)

n ∼ 3× 1011 cm−2

µ ∼ 3× 107 cm2/V sec
T ∼ 10 mK

Measure: shot noise associated with tunnelling across QPC (quantum point contact).
Theoretical prediction:

SI = 2e∗V∆giti(1− ti)
[
coth

(
e∗V

2kBT

)
− 2kBT

e∗V

]
+ 4kBTg (20)

Note that: (a) for kBT � e∗V , the [ ] goes to 0 so no information on e∗, (b) for
kBT � e∗V , SI = 2e∗V∆giti(1 − ti), where ∆gi = (νi − νi−1)e2/h with ti ≡ tunneling
over edge between i and i− 1 ⇒ must know ∆gi, ti (which may depend on Iimp).

 

          Figure 3 

Typical data: (see Fig 3) (note theo-
retical curves need knowledge of gi, ti -
taken from ν = 3 measurements (?)).

Conclusion: e∗ = e/4 with small/zero
e/2 contamination, no conclusion about g.

2. Radu et al. (Harvard-MIT-Lucent),
Science 320, 899 (May 2008).
Sample: GaAs-AlGaAs heterostructure.
(Fig. 4a)

n ∼ 2− 6× 1011 cm−2

µ ∼ 2× 107 cm2/V sec

T ∼ 13− 60 mK

Measure: VD (i.e. RD) and Vxy
(i.e. Rxy) at fixed Idc and Vg, infer the
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tunneling conductance of the QPC by
gT = (RD −Rxy)/R2

xy. Plot RD (∝ gT + const)
as a function of Idc.

(everywhere)

800 nm

QPC
Fi/

dFigure 4a Figure 4b

Typical data are shown on the graph above. Fit data to (weak-tunneling) expression

gT = AT 2g−2F (g, e∗V/kBT ) V ≡ IdcRxy (21)

where F is a known function. Four fitting parameters: A, R∞, e∗, g. Best fit: e∗ = 0.17,
g = 0.35 i.e. AP or U(1) × SU2(2) ( e∗ = 0.25, g = 0.5). Data barely consistent with
(331) state (g = 0.375), probably inconsistent with MR (g = 0.25).

3. Willett et al., (Lucent), PNAS 106, 8853 (2 June 09). Sample: GaAs-AlGaAs
heterostructure. (fig. 5a)

n ∼ 4× 1011 cm−2

µ ∼ 2− 5× 107 cm2/V sec

T ∼ 25− 150 mK

Measure: dependence of RL (≡ V/I) on magnetic field B and gate voltage Vg .
By calibrating with nearby well-understood QHE plateaux (ν = 5/3, 2, 7/3), can infer
effective area A of the dot as a function of Vg. Note effect of Vg is not primarily through
charge accumulation on dot, but directly through change of area ⇒ change of enclosed
flux. Hence, should be a unique relation between period observed in B and Vg.

Conclusion: at low T , main component is e∗ = e/4, but with an appreciable e/2
component. At higher T , e/2 dominates. (Note this behavior is opposite to that
observed for ν = 2/3 and 2/5, see lecture 19).

A more sophisticated and interesting version of this experiment, using the same
geometry, exploits the following idea18 (see Fig 6):

Consider the interference between the two paths 1 and 2 available to an (e/4) quasi-
particle which is to be back-reflected: In fig. (a), where there are no pre-existing e/4

18see e.g. Stern and Halperin, PRL 96, 016802 (2006)
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quasiparticles trapped on the dot, neither its passage down path 1 nor passage down
path 2 affects the state of the existing quasiparticles, so the two processes can interfere
coherently and we expect to see the appropriate periodic dependence of the current on
the magnetic field, gate voltage etc. applied to the dot. The same applies if there is an
even number of e/4 quasiparticles trapped on the dot: again, the state of the pre-existing
quasiparticles changes at most by a phase factor, which simply shifts that interference
pattern without changing its periodicity. The situation is different when there is a single
e/4 quasiparticle on the dot: as we have seen above, if we link that quasiparticle to
one outside the interference area to form a qubit, and encircle it (but not its partner)
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with the incoming quasiparticle, we change the state of the qubit to an orthogonal state.
Thus, if the incoming quasiparticle takes path 1, the final state Ψf of the pre-existing
quasiparticles (or the qubits they form) is identical to their initial state Ψin, whereas if
it takes path 2, Ψf is orthogonal to Ψin and thus to the final state for path 1. Thus, for
a single e/4 quasiparticle on the dot, the interference between paths 1 and 2 should be
destroyed and we should prima facie see no periodic dependence of the current on the
magnetic field, voltage etc. applied to the dot. The same applies to any odd number of
e/4 quasiparticles on the dot. Thus, if the parity of the number nd of e/4 quasiparticles
in the dot is even/odd, we should prima facie see/not see an oscillating dependence of
the current on the dot parameters. Actually, it turns out that the situation is a bit more
complicated, because two (incoming) e/4 quasiparticles can combine to form an e/2
quasiparticle, which is an abelian object: consequently, there should exist independently
of the dot parity a background periodicity of the dependence on dot parameters of e/2.
Assuming this component is small compared to the e/4 one, we would then predict: For
even parity of nd the periodicity in the dot parameters should be dominantly e/4, for
odd parity e/2.

Attempts to test this prediction over the last 4 years are discussed in detail in the
Willett review. To summarize, while there are certainly regions of the parameters (mag-
netic field, gate voltage) for which an e/4 oscillations are dominant, and others in which
only e/2 appears to occur, one cannot say that it has been definitively established that
these regions are discriminated by the parity of the number of e/4 excitations on the
dot. This is very much a work in progress (cf. Willett’s penultimate sentence).

What can we say generically about ν = 5/2? (cf. discussion of Laughlin states
in lecture 19)

A). On torus, by generic Wen-Niu argument, groundstate must be at least doubly de-
generate.

B). Hall effect in “wide” Corbino-disk geometry (fig. 7): By original Laughlin argument,
2φ0 of flux must correspond to e of charge. So minimum “accessible” periodicity of F
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in Φ is 2φ0: e.g. could have the situation as in the figure with single electron making
“adiabatic” transition.

But: 1/2 = 2/4! So, equally plausible scenario is shown on the bottom of the page, with
2 electrons making “adiabatic” transition. This would almost certainly gives “noise”
corresponding to e/4 in the “constricted” Corbino-disk geometry of fig. 10.

So, e∗ = e/4 merely indicates “pairing” and nothing more specific?

[If time permits I will briefly discuss also the ν = 12/5 state, one candidate state which
has anyon excitations of the Fibonacci rather than Ising type.]


