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The quantum Hall effect: miscellaneous topics.

Properties of fractional quasiparticles.

Let’s first consider the excitation energy ∆(p, q) of a quasiparticle in the FQH state with
ν = p/q, p and q integers. On dimensional grounds it should be of the form

∆(p, q) = κ(p, q)(e2/4πεε0lM ) (1)

when lM ≡ (~/eB) is the magnetic length. What is the dependence of κ(p, q) on p and q?
Naively, one may argue that the extra charge e∗ of the quasiparticle is e/q independently
of ν (cf. lecture 19) and it is localized independently of p and q over a distance ∼ lM
(this follows from the Gaussian factor in the wave function). The average number of
particles in the area l2M is, up to a constant, ν = p/q and thus one would conjecture that

κ(pq) = const.(p/q2) (2)

However, this argument cannot exclude the possibility that the constant is itself a func-
tion of p and q.

If one accepts the CF point of view, there is another way of trying to estimate ∆,
since for the integral QHE the only possible nonzero-energy excitations are those up
to the lowest non-occupied LL, and those have energy ~ω∗c = eB∗/m∗ where m∗ is the
(cyclotron) effective mass. At first sight one might expect m∗ to be the crystal effective
mass (= 0.067 me in GaAs). However, as a result of the electron-electron interactions it
may be renormalized. In fact, if we equate ~ωc to ∆ as given by eqn. (1) we find

m∗ =

(
~
e

)
B∗lM
κ/ε

(3)

Since on any given plateau B∗ is proportional to the true magnetic field B, and
lM ∼ B−1/2, this gives the result

m∗ ∝ B1/2 (4)

The main importance of this result is that close to a particular ν−value (e.g. ν = 1/2)
m∗ can be trusted as approximately constant.

It is interesting to enquire whether the cyclotron effective mass defined by eqn. (3)
is equivalent to an effective mass defined in terms of a density of states of the composite
fermions. Actually, the latter idea may make sense only when the effective field B∗

acting on the CF’s is small, but let’s try it out more generally: The DOS per unit area
of a 2D Fermi gas with mass m∗ and a single spin species is

(dn/dε) = m∗/(2π~2) (5)

so when a magnetic field B is applied, the number of states NLL condensing on to a single
LL is (~ωc)(dn/dε)A = (m∗ωc/2π~)A; thus ν ≡ nsA/NLL = nsm

∗ωc/2π~ = ns(eB/h)
and similarly ν∗ = ns(eB

∗/h), which is right: everything is consistent with the postulate
that the “specific heat” effective mass is equal to the “cyclotron” effective mass!
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The ν = 1/2 state of quantum Hall systems.

Although the fractional quantum Hall effect observed in at odd-denominator fractions
is not always perfect, (the diagonal resistivity ρxx does not always sink to zero, and
the plateaux are not necessarily completely flat), one can say that at least when the
denominator is not too large (say ν 6 11) there is almost always, in the best samples,
a clearly visible signature in both ρxx and the Hall conductance Σxy. By contrast, for
most even-denominator fractions and in particular at ν = 1/2 no effect is seen in either
quantity (cf. e.g. Yoshioka fig. 1.11): the Hall conductance in this region is close to the
straight line Σxy = νe2/h which would be predicted by a naive classical theory, and
the diagonal resistivity is flat with at most a very shallow dip (not at all comparable to
the much more pronounced dips seen e.g. at ν = 5/11 and 6/11, ibid. fig. 7.1). That
something interesting may be going on at and around ν = 1/2 was nevertheless originally
indicated by the behavior of the velocity and attenuation of acoustic waves,1 which show
a pronounced dip and peak respectively in the neighborhood of ν = 1/2, well separated
from the ν = 5/11 and 6/11 fractions.

What might one expect to happen around ν = 1/2 in the composite-fermion picture?
Recall that in this picture the system of real electrons in a field B is visualized in terms
of a system of composite fermions with filling fractions ν∗ (each composite fermion being
composed of a real fermion plus a fictitious flux 2pφ0 where p is integral), subject to
a fictitious magnetic field B∗. The relation between the actual and composite-fermion
pictures is

ν = ν∗/(2pν∗ ± 1) (6)

B = ±B∗ + 2pnsφ0 (7)

The sign has to be chosen so as to make B always positive. Inverting these equations
and remembering that ν ≡ nsφ0/B, we have

ν∗ = ± ν

1− 2pν
(8)

B∗ = ±(1− 2pν)B (9)

Suppose now that we put ν = 1
2 + ε, where the quantity ε is “small” but can have either

sign. Then with p = 1 eqns. (8, 9) give

B∗ = εB (10)

ν∗ = 1/(2|ε|) +O(1) (11)

In other words, the equivalent composite-fermion system is sitting in a very small mag-
netic field and thus has a very large value of its effective filling fraction. We can obtain the
effective number per unit area of composite fermions n∗s using definition ν∗ = n∗sφ0/B

∗

1The waves were propagated on the (outer) surface of an AlGaAs/GaAs heterojunction; because
these materials are piezoacoustic, an electric field is thereby generated on the electrons in the (internal)
inversion layer.
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and the relation (from (8-9) ν∗B∗ = νB; the result is that n∗s is simply equal to ns, the
original number of electrons per unit area. (This relation of course holds for arbitrary
ν viewed in the composite-fermion picture, and indeed is a vital component in this pic-
ture). What about the charge of the composite fermions? Since they simply consist of
an electron plus two fictitious “flux quanta”, this is clearly just the electron charge e.

Thus, at exactly ν = 1/2, the composite-fermion picture allows us to regard the
real system of electrons as equivalent (within the mean-field approximation) to a gas of
fermions with the same areal density and charge as the actual system, in zero magnetic
field ! But we know a good deal about this latter system; in particular, if we assume
that the electron-electron interactions do not lead to crystallization, superconductivity
or any other kind of ordered state, then at low temperatures the system is just a textbook
Fermi liquid, with a Fermi wave vector kF which, since we are dealing with a polarized
system (only one Zeeman component populated) is exactly

√
2 times what it would

be for the “textbook” (unpolarized) system of the same density. Moreover, for small ε,
i.e. small deviations of the filling factor ν from 1/2, the composite-fermion system should
experience an effective magnetic field B∗ = εB which may be of either sign (depending
on the sign of ε) relative to the physical field B, but is in any event small; in particular,
even though the ration ~ωc/εF may be quite comparable to unity, for small enough ε the
corresponding ratio for the composite fermion, ~ω∗c/εF, can be made arbitrarily small
compared to 1, so that we are in the regime where the standard (2D) dHvA effect and
related effects would be seen.

Can we test this remarkable prediction? Perhaps the most obvious test would be
to verify that the low-temperature specific heat has the Fermi-liquid form const. T ,
where the constant is proportional to the effective mass m∗. However, this is not very
practical, since in view of the 2D nature of the system the specific heat is very difficult
if not impossible to measure (and in any case, as we shall see below, the behavior of m∗

in the limit ν → 1/2 is problematic). A more promising approach is to try to detect the
effects of the orbital motion which the (charged) composite fermions should execute in
the weak effective field B∗. According to the standard semiclassical argument, in such
a field the fermions should describe circular orbit whose radius R∗ is given by

R∗c = m∗vF/eB
∗ = ~k∗F/eB∗ (12)

which from the relations ns = k2F/4π, ν∗ ≡ nsφ0/B∗ can be written in the simpler form

R∗c =
2ν∗

k∗F
= (ε−1 + 2)k∗−1F ≈ ε−1k∗−1F (13)

To check that the quantity R∗c has some physical significance in the real electron system,
various experiments can be used. In one type one uses an “antidot superlattice” and
compares the pattern of the Hall effect with that in the absence of the superlattice; the
behavior around B = 0 and B = 12 T (the field for which ν = 1/2) is similar,2 see

2when scaled by a factor of
√

2 to allow for the fact that close to B (not B∗) = 0 the electron system
is unpolarized.
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Yoshioka fig. 7.3. A second set of experiments looks for evidence of resonance behavior
when 2R∗c becomes equal to some other characteristic length such as the sample width
or the wavelength of an imposed sound wave (“Weiss oscillations”).

However, possibly the most spectacular experiments are those on “magnetic focus-
ing”.3 The experiment is done on a high-mobility GaAs-AlGaAs heterostructure with
ns ∼ 1011 cm−2; what is measured is Rxx ≡ V/I (see figure). The sense of the current
flow (dashed line) and magnetic field is such that electrons are deflected, in the real field,
to the right. The authors first measured Rxx in small fields B, where no quantum Hall
effect should occur, and found that the pattern shows characteristic anomalies whenever
the condition

Rc = ~kF/eB = L/n (14)

is met, i.e. the pattern is periodic in B with periodicity

∆B = ~kF/eL (= 25 mT) (15)

This is of course not unexpected (it had been seen in earlier experiments). The interesting
result is what is found for B close to 8 T (corresponding to ν = 1/2). On the upper side
(ν > 1/2) the pattern is very similar to the low-field one, but with a spacing

∆B∗ = 36 mT (16)

Since 36 mT is close to
√

2 times 25 mT, this is very close to the periodicity (R∗c(B) =
L/n) one would expect for the composite fermions (which, remember, have k∗F =

√
2kF).

One also finds that on the low side of B = 8 T (i.e. for ν somewhat smaller than 1/2)
there is no such correspondence; this is exactly what one would expect on the composite
fermion picture, since for such conditions B∗ is negative and the composite fermions
passing through the left aperture would be deflected to the left and not affect the system
in the right half.

3Goldman et al., PRL 72, 2065 (1994). Note that Yoshioka’s fig. 7.4 apparently misidentifies the
position of the voltage leads.



PHYS598PTD A.J.Leggett 2016 Lecture 21 The quantum Hall effect: miscellaneous topics 5

A final set of experiments related to the composite fermion picture at ν = 1/2 are the
original ones on ultrasonic absorption. As noted above, this is believed to be effectively
due to the absorption by the 2D electron gas of the electric field generated in the GaAs
via the piezoelectric effect, and is thus a measure of the longitudinal conductivity σxx(q)
of the 2DEG, where q is the wave vector of the absorbed phonon (which is presumably
� kF). Now we have quite generally

σxx(q) =
ρyy(q)

ρ2xy(q) + ρxx(q)ρyy(q)
(17)

In the system of an (integral or fractional) QHE the RHS of eqn. (17) is zero, while in
the transition regimes it is nonzero; in fact of order e2/h. Thus one expects that the
transmitted ultrasound amplitude (proportional to the inverse of the absorption, hence
(approximately) of σxx(q)) should peak at the QHE plateaux and this is indeed seen
in the experiments. On the other hand, it is a known result that for a free 2DEG in a
magnetic field in the region ql � 1 (hence, usually, ωτ � 1) the longitudinal resistivity
should be given by the simple formula

ρyy(q) =
h

e2
q

kF
(18)

In attempting to apply these results to the composite fermion picture of the ν = 1/2
state one runs up against an ambiguity: should we apply eqn. (17) to the conductivity
components of the real electron system, or to the fictitious composite fermion system?
The problem is that in the latter case B∗ is close to zero, so the ρ2xy term in the de-
nominator of the RHS of (17) is small and we have effectively σxx(q) ∼ (kF/q) (e2/h),
leading to a strong absorption (drop in the transmitted amplitude) around ν = 1/2;
this actually seems to be consistent with the experiments (see Yoshioka fig. 7.1). If on
the other hand with Yoshioka we apply (17) to the real electron system, then since for
this σxx ∼ e2/h we find σxx(q) ∼ (e2/h) (q/kF), i.e. the transmitted amplitude should
increase, though not as much as at the IQHE and FQHE peaks. This problem appears
to be currently unresolved. . .

If we now consider vaules of ν close to but not equal to 1/2, the CF model gives
some further interesting predictions: setting ν∗ = p′ where p′ is a (large)4 integer, we
predict a whole series of QH plateaux at ν = p′/2p′ ± 1 (e.g. 4/9, 5/11 ...) which
asymptote to ν = 1/2. These are indeed given, experimentally, and the corresponding
quasiparticle excitation energies ∆(p′) can be inferred from the activated behavior of
σxx. If we assume that m∗ is not only slowly varying with B on any given plateau, but
constant between plateaux, then we find that ∆(p′) is given by the formula

∆(p′) = const.B∗(p′) = const./(2p′ ± 1) (19)

This behavior is seen in experiments on these series5. However, Manoharan et al.
find that in the region close to ν = 1/2, where the higher numbers of the series are

4Note that p′ (often called p in the literature) is not in general the p of eqn. (1)
5Du et al, PRL 70, 2944 (1993): Manoharan et al., PRL 73, 3270 (1994)
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apparently worked out, the effective mass does not appear to be constant as a function
of ν and may diverge for ν → 1/2. (They speculate that this may indicate that the
CF’s are forming a “marginal Fermi liquid”, but to the best of my knowledge the issue
remains unresolved).

Effects of spin, valley and layer degeneracy.6

Up to now, we have been implicitly assuming that the only relevant quantum numbers
of the electrons which participate in the QHE are those related to their in-plane or-
bital motion (namely the Landau-level number n and the orbital angular momentum
l). However, this is not necessarily true. First, whatever the material and geometry,
the electrons always posses a spin degree of freedom, which interacts with the applied
magnetic field (irrespective of the direction of the latter) by the Zeeman term. Secondly,
in Si MOSFET’s (though not in GaAs heterostructures) two of the original six originally
degenerate “valleys” of the bulk crystal remain degenerate even in the presence of a
surface (which removes the degeneracy with the other four). Thirdly, in recent years
it has become possible to construct bilayer QH systems, with two effectively 2D layers
separated by an insulating layer; in this case (as in the case of the two valleys in Si)
we can represent the extra degree of freedom by a “pseudospin” τ such that τz = ±1
corresponds to an electron localized in one layer (valley) or the other. Up to now we
have implicitly assumed that, apart possibly from filled and hence presumably inert Lan-
dau levels, all the relevant electron states correspond to a single value of σz and, where
relevant, τz.

To assess the possible effects of the spin and valley degrees of freedom we need to
estimate some orders of magnitude. The valley degeneracy in Si is usually unsplit,7 but
fortunately does not exist in the GaAs heterostructures which are nowadays the almost
universally favored systems for experiments on the QHE, so I shall neglect it from now
on (if present, it can be handled similarly with the spin degree of freedom). As to the
Zeeman energy, EZ we have already seen that for GaAs in a perpendicular magnetic
field it is about 1/70 of the cyclotron energy, Ecyc. However, the cyclotron energy is
proportional only to the component of the field perpendicular to the surface, while the
Zeeman energy involves all components; hence the ratio is given in the general case by

EZ

Ecyc
≈ 0.014

cos θ
(20)

where θ is the angle made by the field with the surface normal.
In any case, the ration EZ/Ecyc is not the only relevant one; we also have to consider

the Coulomb energy, whose general order of magnitude is e2/εε0lM; this quantity scales
as B1/2 and for GaAs at 1 T is about 4 meV (50 K). The cyclotron energy Ecyc ≡ ~ωc =
e~B/m∗ scales as B and at 1 T is about 2 meV (25 K) (so that the assumption ECoul �

6General reference: Chakraborty and Pietilainen, The Quantum Hall Effect, 1988, ch. 5
7The spin-orbit interaction cannot split it even in the presence of magnetic field, since a term of the

form k · σ, while preserving invariance under time-reversal destroys invariance under spatial inversion.
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Ecyc often made in theoretical discussions is actually not well satisfied for most of the
experimentally relevant fields). We see that whatever the orientation of the field, the
Coulomb energy is large compared to the Zeeman energy at any field . 104 T (a currently
quite unachievable value).8 Consequently we cannot duck the question: Does the effect
of the Coulomb interaction make it energetically favorable to depolarize the QH state,
i.e. to allow the electrons to have both spin polarizations, depsite the fact that this costs
some Zeeman energy?

To investigate this question it is useful to generalize the Laughlin wave function to
the case of zero or partial spin polarization. This was done by Halperin as follows: let the
coordinates of the up-spin electrons be labeled zi and those of the down-spin electrons
ξi. Then a possible (“Halperin”) wave function, which we already met in lecture 20, is
of the form, up to overall antisymmetrization

Ψm+,m−,n(z1, z2 . . . zN↑ ; ξ1, ξ2 . . . ξN↓) =

N↑∏
i<j

(zi − zj)m↑
N↓∏
i>j

(ξi − ξj)m↓
N↑∏
i=1

N↓∏
j=1

(zi − ξj)n×

exp−1

4

 N↑∑
i=1

|zi|2 +

N↓∑
i=1

|ξi|2


(21)

where N↑, N↓ are respectively the total number of up-spin and down-spin electrons; thus
N ≡ N↑ + N↓ and the total spin S is 1

2(N↑ − N↓)~. In order to guarantee the correct
antisymmetry of the wave function under exchange of parallel-spin electrons, both m↑
and m↓ must be odd integers, but in the general case they need not be equal. Note
also that even in the case of a completely unpolarized (spin singlet) state, where from
symmetry one expects m↑ = m↓, the exponent n may be different. Any given state of
the form (21) is conventionally labeled by the exponents m↑,m↓, n; thus for example the
state with m↑ = m↓ = 3, n = 1 (which as we shall see in a later lecture is a candidate
for the ν = 5/2 QH plateau) is called the “(3,3,1)” state.

Whether or not a partially polarized or unpolarized state of the form (21) is en-
ergetically competitive, at a given fractional9 value of ν, with the simpler completely
polarized states discussed in lectures 18 and 19, is a matter for detailed calculation.
Since as usual in the theory of the QHE there is no “small parameter”, one typically
falls back on numerical computation for a small number of electrons. Such calculations
tend to suggest that while the most robust FQHE states such as ν = 1/3 are likely to
be completely polarized, partial or no polarization may be favored for larger values of
the denominator.

8However, the above discussion, which is based entirely on order-of-magnitude estimates, ignores the
fact that quantitative calculation of the energies of fractional quasiparticles (which to a first approxi-
mation are entirely Coulomb in origin) give values which are at least an order of magnitude small than
e2/εε0lM (there ought at least to be a 4π in the denominator!). Thus even at 15 T this energy may be
smaller than the Zeeman term.

9It seems virtually certain that the IQHE at even integral values of ν is unpolarized, and of course for
ν > 2 one is likely to get only partial polarization, because the LLL is likely to be filled for both spins.
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What about experiment? Direct measurement of the magnetization, e.g. by SQUID
magnetometry, is difficult because of the small absolute number of spins involved. How-
ever, it is possible to measure the degree of spin polarization by an ingenious technique
in which one photoexcites holes from the donors in the bulk GaAs, allows them to re-
combine with the 2D electrons and measures the degree of circular polarization of the
recombination radiation. The analysis of the raw data is not entirely trivial, because
the holes themselves tend to be polarized by the magnetic field, but this effect can be
calibrated by using the data at ν = 1, where 100% polarization of the 2DEG is expected.
A series of experiments along these lines were performed by Kukushkin et al.10 in 1997,
with the following results: For all states with ν 6 1, full polarization was observed at
low temperatures in fields above 4 T. However, at lower fields the ν = 2/3, 2/5 and 3/5
states were observed to be only partially polarized. In all cases the degree of polarization
decreases rapidly with increasing temperature. Some very interesting phenomena were
observed at values of ν close to 1: while at ν = 1 the state is fully polarized at all B,
for B < 2 T there is considerable depolarization at close-by values. This is thought to
reflect the presence of “skyrmions”, a collective excitation involving the simultaneous
excitation of a considerable number of spins. Agreement between theory and experiment
on this appears to be qualitative but not entirely quantitative.

Another technique to measure the spin polarization of QHE systems is electrically
detected NMR.11 This has been used to study a phase transition which apparently occurs
for the ν = 2/3 state in low fields, between an unpolarized and a fully polarized state as
a function of field.

Finally, let’s turn to the quantum Hall effect in bilayer systems. These can be realized
in double quantum well heterostructures: a typical experimental setup12 is shown in
fig. 2. The two 2D electron gases occupy the GaAs quantum wells; their areal density can
be controlled individually by appropriate gating. However, the perpendicular magnetic
field will normally be the same for both layers so that not only are the cyclotron and
Zeeman frequencies identical but the ratio of filling factors ν1/ν2 is just the ration of
the densities; it is possible to implement pretty much arbitrary values of this ratio. The
normal notational convention is to denote the “total” filling factor ν1 + ν2 by νT .

There are clearly a substantial number of different energies relevant to this problem.
In the first place, we have for each layer the “single-layer” energies ~ωc and EZ, and the
intralayer Coulomb energy V (r) ≡ e2/εε0r; as previously we denote the quantity V (lM)
by Vc and note that it is the same for both layers (but we must remember also that the
“characteristic” Coulomb energy which actually enters excitation energies etc. is αVc
where α � 1). We will assume unless otherwise stated that not only ~ωc but EZ are
� αVc, so that the system is fully spin-polarized as regards “real” spin (as distinct from
pseudospin, see below). However, we also have several energies which are specific to the
bilayer problem:

(1) A possible (voltage-controlled) bias energy ∆ε between the two layers.

10PRB 55, 10607 (1997).
11See O. Stern et al., PRB 70, 075318 (2004).
12Champagne et al., PRB 78, 205310 (2008).
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Figure 2:

(2) A possible tunneling energy ∆ between the two planes. In zero parallel magnetic
field, ∆ is simply a position-independent constant. However, by applying a field
component B‖ parallel to the planes we can make the phase of ∆ depend on the
in-plane position; e.g. if the field is along the y-axis

∆→ ∆ exp i

∫ z2

z1

A(x) dz ≡ ∆ exp iφ(x) (22)

The phase φ(x) is periodic (in a suitably chosen gauge) with a period L such that
LdB‖ = φ0, where d is the effective interlayer distance (see below).

(3) The interplane Coulomb interaction: If we assume for simplicity that the dielectric
constant of the “spacer” material is identical to that (ε) of the 2DEG layer (a
fairly good approximation when the spacer is GaAlAs and the 2DEG GaAs), then
in coordinate space the “raw” coupling is of course just the standard e2/4πεε0r3
where r3 is the 3D distance. If we make the approximation that the thickness
of the 2DEG layers is small compared to their separation, then we can write the
interaction as

V12(r) = e2/4πεε0
√
r2 + d2 (23)

where d is the center-to-center layer spacing and r is the component of r1 − r2
parallel to the layers. It should be noted that although the expression (23) does
not look that different from the in-plane interaction V11 = V22 = e2/4πεε0r, the
2D Fourier transforms of the two quantities are quite different:

V11(k) = V22(k) = const k−1, V12(k) = const k−1 exp−kd (24)

In real life, the thickness of the individual 2DEG layers is often not small compared
to their separation, so one needs to define an “effective” interlayer distance d;
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the latter may be sensitive to the z-dependence of the wave function and thus
adjustable, within limits, by variation of the gating voltage.

Let us start by assuming no tunneling between the two layers of the bilayer, and
moreover assume for the moment that the interlayer bias ∆ε is zero. At first sight the
problem then looks similar to that of “spinful” electrons on which the Zeeman field has
been turned off, and indeed one can usefully introduce a “pseudospin” variable τ such
that τz = ±1 corresponding to the electron being on layer 1 and 2; in such notation the
tunneling energy, were it important, would be represented by ∆ times the xy-component
of τ . However, even in the absence of tunneling and bias the bilayer problem is not in fact
equivalent to that of a system of electrons with real spin in zero Zeeman field, because
in contrast to that problem the Coulomb interaction depends on the relative pseudospin
of the electrons involved: in fact

VCoul(τ , τ
′; r) =

1

2

[
V11(r) + V12(r)

]
+

1

2

[
V11(r)− V12(r)

]
τ1zτ2z (25)

so in general VCoul is not SU(2) invariant in the τ -space.13 It is intuitively clear that the
qualitative features of the behavior are likely to depend strongly on the dimensionless
ratio d/lM. In the limit d/lM → ∞, we have two completely independent single-layer
quantum Hall systems and they will behave appropriately. In the opposite limit d/lM →
0 (but still no tunneling allowed between the layers) the situation is genuinely equivalent
to the case of a real-spin-1/2 system in zero Zeeman field, since now V11(r) = V12(r) and
the system prima facie has the full SU(2) invariance in τ -space.

A particularly interesting case is when νT = 1. For large values of d/l the capacitance
effect due to the long-range part of the Coulomb interaction should enforce (for ∆ε = 0)
the “equipartition” result ν1 = ν2 = 1/2, and we know that at ν = 1/2 the system can
be regarded as a Fermi liquid of composite fermions; in particular, there is no plateau in
RH. In the opposite limit d/lM → 0, just as in the analogous real-spin case, it is generally
believed that a good description of the system is the so-called Fertig wave function:

ΨF =
∏

l∈LLL

1√
2

(c†1l + c†2l)|vac〉 (26)

where c†jl creates an electron in the l-th state of the LLL in layer j. In other words, even
though there is no tunneling between the layers, all electrons occupy the even-parity
state 1/

√
2 (|1〉+ |2〉).

It is interesting to note that the Fertig state is closely related to the Halperin (111)
state

Ψ111 =

N1∏
j<k

(zj − zk)

N2∏
r<s

(wr − ws)
N∏
j,r

(zj − wr) exp−1

4

 N1∑
j=1

|zj |2 +

N2∑
r=1

|wr|2
 (27)

In fact, the latter is just the projection of the Fertig state on to the manifold with given
single-layer occupations N1 and N2 (see Jain, pp. 464-5).

13Jain eqn. (13.5) makes the second term proportional to τ1 · τ2, which seems to be an error.
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In the limit of true SU(2) invariance, the Fertig state (26) would be degenerate with
states (j = 1, 2) ∏

l∈LLL
c†jl|vac〉 (28)

In real life d/lM is never zero, so there will be a capacitance term which disfavors this
state (this is just the second term in (25), which clearly favors τz tot = 0). However, we
are still left (actually for any value of d/lM) with a U(1) invariance corresponding to
rotation around the z-axis in τ -space, i.e. to the transformation

1√
2

(|1〉+ |2〉)→ 1√
2

(|1〉+ exp iφ|2〉) (29)

which in the absence of tunneling is a good symmetry. Consequently, we got a situation
which begins to look very like the standard one-plane XY-model used to describe e.g. the
superfluidity of 4He films (see lecture 8). Indeed, we expect that a spatial variation of
the relative phase φ will cost an energy proportional to (∇φ)2, which can be written
just as in the XY-model as

Ebend =
1

2
ρs

∫
(∇φ)2 d2r (30)

From this analogy one would expect that in this limit (d/lM → 0) there is no true
ODLRO at any nonzero temperature, but the system nevertheless shows the analog of
“superfluidity” below a Kosterlitz-Thouless transition temperature given by

TKT =
2

π
ρs(TKT) (31)

How would this “superfluidity” be manifested? A variation of the relative phase φ in
the two layers corresponds to no electrical current, but it does correspond to a coun-
terflow, which can be induced by contacting the two layers of the bilayer individually.
An experiment along these lines was done by Kellogg et al.14 on a bilayer system with
d/lM = 1.58, with the result shown in Jain fig. 13.6: when the total current in the two
layers and the (common) voltage across them are measured, the pattern is essentially
that of the standard IQHE with ν → νT , and in particular at νT = 1 there is fairly well-
defined plateau in the Hall resistance Rxy and a dip in Rxx (though the corresponding
features at νT = 2 are much more “ideal”). By contrast, if one measures in the “counter-
flow” geometry there is no (finite-height) plateau at νT = 1, in fact the Hall resistance
tends to zero, while the longitudinal resistance appears to remain finite (though it does
have a dip). This is strongly reminiscent of superfluidity; however, the true analog of
this would be if Rxx, not Rxy → 0, and there is no experimental evidence for this even
for T < calculated TKT.

In view of the qualitatively quite different behavior of the system at νT = 1 in the
two limits d/lM → 0 and d/lM → ∞, the question arises whether there is a phase

14PRL 93, 036801 (2004).
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transition for intermediate values of d/lM, or alternatively as a function of the charge-
density imbalance ∆ν ≡ ν1−ν2 (since for ∆ν = 1 the system is clearly confined to layer 1
and thus in the simple IQHE state). The most systematic investigation of this question
is reported in a recent paper by Champagne et al.15 who indeed see, via interlayer
transport measurements, a transition occurring as a function of ∆ν, d/lM and T . What
is quite surprising about their results is that the “phase-coherent excitionic state” (i.e. a
generalization of the Fertig wave function to the state a|1〉 + b|2〉, where |a|2 = ν1,
|b|2 = ν2) persists at least up to an imbalance ∆ν of 0.5 (i.e. ν1 = 3/4, ν2 = 1/4).

Finally, yet more possibilities are opened up once we allow for a non-negligible inter-
layer tunneling rate (though this will clearly tend, by fixing the “optimal” value of φ, to
inhibit the “excitonic superfluidity” described above). There is no space to discuss this
topic here: see e.g. Yoshioka section 6.5.2.

What effects destroy the QHE, and how fast?

There are really two different though related questions here: (a) What variation of the
parameters (temperature, filling factor, disorder...) is required to change the behavior
qualitatively from that in the QHE regime? (b) given that the variation is much smaller
than this, what are the quantitative corrections to the fundamental formula
Rxx = 0, Rxy = νh/e2?

As we have seen, a necessary set of conditions for the integral QHE to occur is that
(1) the single-particle eigenstates should include a band which extends across the whole
system, (2) this band should be completely filled. Thus we can immediately conclude,
qualitatively, (a) that a sufficient degree of disorder may suppress the effect, simply by
localizing all the states and turning the system into a conventional insulator; this will
happen, crudely speaking, when the potential becomes so “rugged” that it is impossible
to find an equipotential contour spanning the whole system (b) that a sufficiently high
temperature will suppress the effect by depopulating the extended band. This requires,
crudely speaking, that the Fermi energy (chemical potential µ) should be within ∼ kBT
of the edge of the extended band, and we would thus expect the plateaux to narrow, and
the “transition” regions between them to broaden, with increasing temperature. A suffi-
cient condition for the effect to be destroyed completely should be kBT & ~ωc; for GaAs
heterostructures in a field of 15 T , this condition is rather weak, T & room temperature,
so in view of the non-observation of the effect at anything like room temperature 16 other
considerations must come in first.

Qualitatitively similar considerations apply to the fractional effect: again, disor-
der sufficient to localize the single-particle states should obviously suppress the effect.
However, the effect of temperature should be stronger, and there is now an additional
characteristic energy scale over and above ~ωc, namely the quasiparticle excitation en-
ergy, which as we have seen is (for ν = 1/3) ∼ 0 ·025(e2/4πεεolM ); relative to ~ωc energy
is ∼ 0 · 025(aeff/lM ) ∼ 0 · 05 for GaAs in 15 T . Hence a temperature ∼ a few degrees

15PRB 78, 205310 (2008).
16In GaAs heterostructures or Si MOSFETs. In graphene a room-temperature QHE has been observed.
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should certainly be enough to suppress the FQHE. (Experimentally, these estimates turn
out to be distinctly optimistic, in particular there are no cases in which a clear FQHE
has been seen above 1K (though see footnote)).

What about the effect of varying ν? Experimentally, no QHE has been seen either for
ν . 0.05 or for ν & 10 (and no FQHE has been seen for ν > 4). It appears likely that the
lower limit has to do with the fact that the quantitative expression for the quasiparticle
excitation energy is actually proportional not to e2 but to e∗2, where we recall that e∗

is the inverse of the denominator of the filling fraction (irrespective of the numerator).
Hence, rather generically, as we increase the denominator the FQHE should become more
and more sensitive to finite-temperature effects; and in particular the minimum value of
ν should be limited by current cryogenics (and presumably improvable). Actually, for
sufficiently small ν (or more precisely sufficiently small ns) the 2D electron system is
predicted to form a Wigner Crystal, but there is no evidence that current experiments
have approached this limit.

As to the current upper limit on ν, it is not entirely clear whether this is in effect
an upper limit on ns; clearly for large enough ns various things may go wrong with the
simple picture of the QHE, and in particular one may eventually get occupation of the
second transverse level, so that the system is no longer strictly 2D. One might try to get
around this consideration by going to small B, but then one needs to take into account
that the Coulomb energy will become large compared to the cyclotron energy.

Let’s now turn to the question of quantitative corrections to the QHE in parameter
regimes when it is not destroyed, i.e. where dimensionless parameters such as kT/~ωc

or an appropriate dimensionless measure of disorder are small. If α generically indicates
such a parameter, then we expect that the correction to the “ideal” QHE formulae will
be either (a) proportional to αn, n > 0 (b) proportional to exp−1/α, or (c) zero for all
up to some threshold. As regards the effect of static disorder, it appears that (c) may
be the case, with the “threshold” being that for percolation, cf. above. With regard to
effects involving temperature, the natural expectation, based on Fermi statistics, would
be that the effect is of type (b), e.g. Rxx ∼ exp−∆/kBT when ∆ is ∼ ~wc for the
IQHE and ∼ e∗2/4πεε0lM for the FQHE; this expectation seems to be borne out at
least qualitatively by experiment. Similar considerations should prima facie apply to
the effect of inelastic (e.g. phonon) scattering, an effect we have not discussed explicitly
up to now; the reason is that such process will tend to destroy (e.g.) the IQHE only to
the extent that they can scatter particles from the filled extended band to states above
the Fermi energy, and the number of phonons available to do that is ∼ exp −∆/kBT .

An interesting question relates to the possible inaccuracy of the QHE associated
with the presence of a nonzero electric field E (or equivalently a nonzero voltage drop
∆V across the sample: trivially, such a nonzero ∆V is necessary to measure the resis-
tances!) What are the relevant dimensionless ratios in this case? At zero temperature
the most obvious guess seems to be ElM/~ωc = (∆V/~ωc)(lM/L) where L is the sample
dimension. Actually, the experimental behavior17 seems to correspond to case (c), with
the breakdown current (which on a given step should be proportional to ∆V ) scaling

17E.g. Alexander-Webber et al., Phys. Rev B 86, 045054 (2012)
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linearly with B (not as B1/2 as the above argument would suggest). This dependence
can be explained by a theory18 which attributes the breakdown to an “avalanche” effect
involving catastrophic heating of the electron system.

Finally, a brief comment on the “width” of the FQHE plateaux. As long as the
quasiparticle excitation energy, while small compared to ~ωc, is larger than the width
of the extended region within the relevant LL, the arguments concering the effects of
disorder used for the IQHE can be transcribed. However, in contrast to the IQHE, the
FQHE plateaux tend to “crowd one another out”: in an ideal system at T = 0 there
would presumably be an infinite number of different FQHE states in a given range of
ν! Exactly how the transitions between different FQHE plateaux takes place, and the
nature of the system in the transition region, seems to be one of the least understood
aspects of the subject.

18Komiyama et al., PRL 77, 558 (1996)


