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Topological insulators: preliminaries1,2

At least as far as currently known, a good qualitative understanding of the properties of
the class of materials now known as topological insulators (TI’s) can be achieved on the
basis of a picture of noninteracting electrons subject to a particular kind of band structure,
which generally speaking involves nontrivial effects of the spin-orbit interaction (SOI). (As
a result, the experimentally observed TI’s generally contain heavy elements where the SOI
is important). Thus, with the virtue of (considerable!) hindsight, the theory of TI’s may
be regarded as simply traditional undergraduate solid-state physics seen in a new light;
the “new light” focuses particularly on states of the surface of the system, which have not
traditionally received much attention. The theory of TI’s was originally developed in the
context of 2D (or strongly layered) systems, and while some of the ideas can be generalized
to 3D, most of the experiments have been done on 2D or quasi-2D systems, so I shall
concentrate on those in these lectures. Let’s start by reviewing some relevant elementary
considerations.

First, let’s review some basic properties of a system which is confined to a 2-dimensional
Hilbert space. Any such system is formally equivalent to a particle of spin 1/2 , and we
will say that it is described by a “pseudospin” vector σ̂, such that any pure state is an
eigenstate of the operator n ·σ̂ with eigenvalue ±1, where n is some unit vector:

n · σ̂|ψ〉 = ±|ψ〉 (1)

We will usually choose to work in the basis of eigenstates of σ̂z; depending on the context,
these may be actual eigenstates of the true spin (intrinsic angular momentum) of the
electron in question, but in the context of the theory of TI’s are at least as as likely to
correspond to different Bloch bands (cf. below).One point to note is that since any operator
in a 2D Hilbert space can be written as a linear combination of terms proportional to the
unit matrix and to the three Pauli matrices σi(i = x, y, z), and the term proportional to
the unit matrix has no effect, then the Hamiltonian of any pseudospin −1/2 system can
always be written in the form

Ĥ = −σ · H (2)

where H is a ”pseudo-magnetic field” (which, if the Hamiltonian is to be hermitian, must
be a real ”vector”, i.e. have real components Hi, i = x, y, z).

Potted review of elementary band theory: band inversion
Consider a crystalline lattice such that the potential felt by a single electron satisfies the
condition

V (r + R) = V (r) (3)

1Hasan and Kane, Revs. Mod. Phys. 82, 3045(2010): Qi and Zhang, ibid. 83, 1057 (2011)
2B.A. Bernevig and T.L. Hughes. Topological Insulators and Topological Superconductors, Princeton

Univ. Press (2013)
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where R ≡ la +mb + nc, with l,m, n integers and a,b, c the primitive lattice translation
vectors. Then Bloch’s theorem assures us that the single-electron eigenstates can be written
in the form (ignoring spin for the moment)

ψk,n = exp (ik · r) · uk,n(r) (4)

where uk,n(r) is periodic with crystal periodicity, i.e.

uk,n(r + R) = uk,n(r) (5)

We call k the quasimomentum and n the band index. The energy εkn associate with ψkn

is in general a function of both k and n.
If K is a reciprocal lattice vector, i.e. a vector such that

exp iK ·R = 1. ∀R (6)

then we can choose the ukn to be periodic in K, i.e.

uk+K,n(r) ≡ ukn(r) ∀r (7)

The three minimal values ofK (the “primitive lattice vectors”) define the first Brillouin
zone (FBZ); it is possible (and we shall do it) to use the so-called “reduced zone” scheme,
in which k by convention is confined to the FBZ and the energies plotted as εn(k) within
this zone.

Let us first consider the kind of simple situation indicated (in a 1D cross-section) in
fig. 1,

Fig. 1

i.e. a case in which for any given value of k there are two relevant bands, with the
conduction-band state always above the valence-band state:

εcond(k) > εval(k), ∀k (8)



PHYS598PTD A.J.Leggett 2016 Lecture 22 Topological insulators: preliminaries 3

Then according to the standard textbook analysis there are three possibilities, depend-
ing on the structure of the bands and the number of electrons filling them:

1. if there is no band overlap, i.e. if the quantity ∆ defined by

∆ ≡ mink(εcond(k))−maxk(εval(k)) (9)

is positive, then

(a) if the total number of electrons in the crystal is first enough to fill the valence
band (i.e. Nel/2Nsite = integer3), then the system is a simple “band” insulator
(or for small enough ∆ a semiconductor) with band gap ∆.

(b) if the number of electrons does not satisfy this condition, (and in particular, if
Nel/2Nsite = n+ 1/2 as is a common state of affairs), then either the valence or
the conduction band is partly filled, and the system is a metal.

2. if there is band overlap, i.e. if ∆ < 0, then both the conduction and the valence
bands are partially filled; the usual name for this case is a “semimetal”, and it will
basically show metal-like conduction.

(a) (b)

Fig. 2

More interesting in the present context is the case where condition (8) is violated for
some value k, and moreover the condition Nel/2Nsite = integer is satisfied. What happens
then? Lets us suppose for simplicity that in the absence of hybridization between bands,
we have

εval(k) = A−Bk2, εcond(k2) = C +Dk2, A > C,B +D > 0 (10)

3At this point we need of course to invoke the (real) spin degree of freedom to allow population of each
Bloch state by two electrons.
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so that the situation is roughly as shown in fig.(2a).
Then the filling will look like the picture in fig. (2b), where the black dots represent

the valence band and the light dots represent the conduction band. We can represent this
situation in the language of a 2D “pseudospin” space by assigning pseudospin | ↑〉 to the
valence band and pseudospin | ↓〉 to the conduction band; then, subtracting out a term
which is proportional to the unit matrix, we find that for given k the effective Hamiltonian
can be written

Ĥk = −σk · Hk (11)

Hk ≡ −ẑ(εcond(k)− εval(k)) = (A− C)− (B +D)k2 (12)

and in the groundstate σk will point along the direction of Hk, i.e. along ±ẑ. The crucial
point is that Hk changes sign at the points kc given by

k2c =
A− C
B +D

(13)

(which is the full 3D case form the surface of a sphere). Hence in the pseudospin language
a cross-section passing through the origin will look like

Fig. 3

So far, the energy “gap”, which is twice the magnitude of Hk, goes to zero at kc, so the
system is a semimetal just as in case(2) above! (cf. fig (2b)) ...

However, in real life there may be some term Ĥ ′ in the Hamiltonian which “hybridizes”
the two bands, i.e. such that

Mk ≡ 〈ucond(k)|Ĥ ′|uval(k)〉 6= 0 (14)

Since Mk is in general complex, it will correspond in the pseudospin model to some direction
in the xy-plane. Let’s suppose for definitions that Mk ∝ (kx + iky), as is in fact the case
for the SOI (see next lecture), then the transverse component of the effective “field” is

Hk,l = αkk (15)
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(where αk is real and must behave appropriately at the Γ-point and at the edge of the
FBZ: we put this issue aside for the moment). The pseudospin Hamiltonian is now

Ĥk = −σk · Hk (16)

Hk = (P −Qk2)ẑ + αkk̂ (17)

and in the groundstate the pseudospin will orient itself along Hk. Now the crucial point is
that the energy gap Ek is given as a fraction of k by the expression

Ek = 2|H| = 2{(P −Qk2)2 + α2
k}1/2 (18)

and in general is nowhere zero. Thus, in the groundstate, the electrons just fill up the
(hybridized) lower band, and the system behaves as an insulator. Despite this, we shall
see, its properties are interestingly different from those of the band insulators (case (1a)
above); it is in fact a topological insulator.

Rotation of a (pseudo-)spin 1/2 “particle”

The general expression for the change of a quantum state |Ψ〉 (whether scalar, spinor,
tensor ...) under rotation R̂(θ, ω̂) through an angle θ around an axis4 ω is given by

|Ψ′〉 ≡ R̂(θ,ω)|Ψ〉 = exp iθω · Ĵ|Ψ〉 (19)

where Ĵ is the operator of total angular momentum. If for a particle of spin 1/2 we ignore
the orbital motion (so that |Ψ〉 is just a 2-dimensional spinor) then J is just 1

2σ, so

R̂(θ,ω) = exp
iθ

2
ω · σ̂ =

(
cos

θ

2

)
1̂ + i

(
sin

θ

2

)
ω · σ̂ (20)

(where the second equality follows from the commutation relation of the components of
σ). We note in particular that for a 2π rotation around any axis we have

R̂(2π,ω) = −1 (21)

– the celebrated “4π periodicity” of spinors, which we have always met in the context
of weak localization and which has been spectacularly verified in experiments on neutron
interferometry. Note also that if the rotation is through π around an axis laying in the
xy-plane and making an angle χ with the x-axis, then its effect on the state | ↑〉 is

R̂(π : χ)| ↑〉 = (exp iχ)| ↓〉 (22)

4ω is assumed to be a unit vector; I omit the “hat” so as to avoid confusion with the notation for an
operator.
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– a result which will be useful below.

Time reversal
While it is perfectly possible to define the operation of (pseudo)-time reversal for any

2D Hilbert space, in the pseudospin case it is usually not a symmetry of the Hamiltonian,
so the ensuing discussion refers primarily to real spin. For a scalar (spinless) particle the
operation T̂ of time reversal must transform the operator x̂ to itself, but transform the
momentum operator p̂ ≡ −i~∂/∂x to −p̂; thus an adequate prescription is that T̂ is simply
the operation of complex conjugation

T̂(scal)|ψ(r)〉 = K|ψ(r)〉 ≡ |ψ∗(r)〉 (23)

Evidently, if L̂ is the operator of orbital angular momentum r̂ × p̂, we have for scalar
particles

T̂ L̂T̂−1 = −L̂, T̂ 2 = 1 (24)

For spinor particles, the prescription (23) is not enough, since we also need Ŝ → −Ŝ,
or since for spin 1/2 Ŝ ≡ 1

2 σ̂

T̂ σ̂T̂−1 = −σ̂ (25)

It is sufficient to take5

T̂ = −iσ̂yK̂ (26)

where explicitly

−iσ̂y ≡
(

0 −1
1 0

)
(27)

and K̂ as before complex-conjugates the (components of the) wave function. Note that
since −iσ̂y is a real matrix, it commutes with K̂, and we have

T̂ 2 ≡ (−iσ̂yK̂)2 = (−iσ̂y)2K̂2 = (−iσ̂y)2 = −1 (28)

– a statement which actually valid more generally for half-odd-integer spin.
Associated with the operation of time reversal for a spin − 1/2 particle6 is an important

theorem: Kramers’ theorem. Consider a spin − 1/2 particle described by a spinor |Ψ〉 ≡(
α
β

)
(where α and β might in general be function of r). By definition

T̂ |Ψ〉 = (−iσ̂yK̂)|Ψ〉 ≡
(

0 −1
1 0

)(
α∗

β∗

)
=

(
−β∗
α∗

)
(29)

5The choice of the y-axis is obviously arbitrary, but it is the one conventionally used in the literature.
Note incidentally that since the operator −iσ̂y simply rotates by π around the y-axis, the result T̂ 2 = −1
is just equivalent to the “4π symmetry.”

6And more generally for half-odd-integral spin.
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and so
〈Ψ|T̂Ψ〉 = −α∗β∗ + α∗β∗ = 0 (30)

Hence, T̂Ψ〉 is orthogonal to |Ψ〉 and must be a different state. (Note that this doesn’t
(necessarily) work for integer spin; e.g. the state S = 1, Sz = 0 is 2 − 1/2(| ↑↓ + ↓↑〉) and
thus transforms into itself (up to an overall phase) under T̂ ).

Moreover, suppose the Hamiltonian is invariant under time reversal:[
Ĥ, T̂

]
= 0 (31)

In a 2D Hilbert space, the most general form of the Hamiltonian is, as we have seen,

Ĥ = ε1̂− σ̂ · H (32)

where the (pseudo-) field H must be real. Then since T̂ ≡ −iσ̂yK̂ anti commutes with
σ̂ (rather than commuting), (32) implies that Ĥ = 0. Thus Ĥ must be proportional to
the unit matrix; and since |Ψ〉 and T̂ |Ψ〉 are mutually orthogonal, 〈T̂Ψ|Ĥ|Ψ〉 = 0. The
conclusion is therefore Kramers’ theorem:

For a spin − 1/2 particle governed by a time reversal invariant Hamiltonian, the states
are always (at least) doubly degenerate

“Merons” in coordinate space: Chern number
Above we anticipated the fact that a topological insulator differs from a band insulator

in having a nontrivial configuration, in k-space, of the pseudospin operator describing the
two relevant Bloch bands. However, to get some intuitive feeling for what is going on
it may be helpful to consider first a somewhat analogous situation which originally arose
in a quite different context (that of superfluid 3He-A) and which involves a variation in
coordinate space rather than k-space.

The superfluid A phase of liquid 3He is believed to be characterized by the formation of
Cooper pairs whose relative wave function is a product of a spin function (corresponding
to S = 1, Sz = 0 along some axis) which can be ignored in the present context, and
a function of the relative momentum k where angular dependence is, if the coordinate
system is appropriately chosen (see below), of the form exp iϕk, or equivalently kx + ikϕ,
Transcribing this dependence into coordinate space, we can say that for a spatially uniform
case with an appropriate choice of coordinates axis x, y, z, the pair wave function (order
parameter) F (r) has the following dependence on the relative coordinate r:

F (r) = f(|r|)(x+ iy)/r ≡ f(|r|) exp iϕ (33)

where ϕ is the polar angle with respect to the z-axis. We can generalize this expression
to be independent of the choice of axes by introducing an orthogonal triad of unit vectors
n1, n2, l such that n1 × n2 = l (see fig. 4) and writing

F (r) = f(|r|)(n1 + in2) · r/r ≡ f(|r|) exp iϕr (34)
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Fig. 4

(a)
(b)

Fig. 5

where ϕr is the angle of rotation of r around l. When the pair wave function is written
in this way, it is clear that multiplication by an overall phase factor eiχ is equivalent to
rotation by χ around the axis of l. The mathematical object formed by such a triad of unit
vectors, with their orientation allowed to vary in space (cf. below) is technically known as
a Cosserat continuum, and had been studied in geomechanics and elsewhere prior to the
discovery of 3He-A; but the incorporation of the quantity ϕr ≡ arg(n1 + in2 + r) as the
phase of a quantum-mechanical wave function, with the single-valuedness constraint that
implies, gives it a new level of interest.
Consider now a situation in which the order parameter (pair wave-function) is spatially
varying: F = F (r,R) where R is the coordinate of the COM of the pair. We first briefly
consider the “trivial” case where the vector l is constant (fig. 5a) and the only spatial
dependence is the multiplication of F (r) by a phase factor exp iχ(R), or equivalently the
rotation of n1 and n2 around l by an angle χ(R):

F (r : R) = (exp iχ(R))f(r) (35)

In this case we can define a “superfluid velocity” vs(R) just as for a simple s-wave Fermi
superfluid

vs(R) ≡ h

2m
∇Rχ(R) (36)

and derive the standard “irrotationality” and “Onsager-Feynman” results

curl vs = 0 (curl ≡∇R×) (37)
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∮
vs · dl = nh/2m (38)

The rotational properties in this special case are therefore identical to those of a simple
s-wave superfluid.

Much more interesting is the case where the direction of the vector l is varying in space
(fig. 5b). The variable χ now becomes nonholonomic; that is, while its differential
dχ (or equivalently a differential rotation of the triad around the axis of l) can still be
defined, and hence so can ∇Rχ, the quantity χ(R) itself (or equivalently the “total angle
of rotation around l”) is not defined, since the integral of ∇Rχ from (say) the origin to R
will in general depend on the path followed. Consequently, while under these conditions
we can still define a “superfluid velocity” vs by eqn. (36), this velocity in general no longer
satisfies eqns. (37) or (38). In fact, (36) is replaced by the celebrated7 Mermin-Ho relation:
for subsequent convenience we write this in two different notations:

A. (curl vs)i =
~

2m
εijkεαβγlα∂jlβ∂klγ (39 a)

B. curl vs =
~

2m
εαβγlα∇lβ ×∇lγ (39 b)

While (39 a) and (39 b) are of course trivially equivalent, (39 b) is convenient for application
to a 2D situation (where curl vs is automatically up the axis perpendicular to the plane)
whereas (39 a) has the advantage that it makes it explicit that there is no necessary relation
between the “spaces” described by the two sets of axes (α, β, γ) and (i, j, k), so that it is
straightforward to make the generalization to the case where the latter describe k-space
and the former pseudospin space.

The Mermin-Ho relation is sufficiently important that it is worth giving a brief and
informal proof of it. It is actually a consequence of the following general theorem, which
we have already exploited in the discussion of spin effects in weak localization:

Suppose R̂1 and R̂2 represent two infinitesimal

Fig. 6

rotations, characterized by vectors ω1 and ω2 respec-
tively, where the direction of ωi specifies the axis of
rotation and its (infinitesimal) magnitude the an-
gle of rotation. Then the sequence R̂1R̂2R̂

−1
1 R̂−12

∼=
1 + [R̂1, R̂2] is equivalent (up to order ω2) to a single
rotation characterized by the vector ω1 × ω2.

We will give the proof for the 2D spatial geome-
try which is the case of interest for (2D) topological
insulators; that is, we assume that the spatial coor-
dinate r lies in the xy-plane, so that the quantity

7That is, to aficionados of superfluid 3He. It seems to be unknown to many workers in the field of
topological insulators
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curl vs is automatically along the z-axis. Consider an infinitesimal circuit in which we
start from and return to the point O. Imagine, first, that we make infinitesimal rotations
of the vector l on each leg of the circuit, but do not rotate around l (i.e. set vs = 0).
Since the change δl in l in l must be perpendicular to l (l is a unit vector!) the rotation
R̂1 ≡ R̂O→A is characterized by the perpendicular vector

ω1 = δl(1) × l ≡ δx ·
(
∂l

∂x
× l
)

(39)

Similarly, the rotation R̂2 ≡ R̂A→B is characterized by

ω2 = δl(2) × l ≡ δy
(
∂l

∂y
× l
)

(40)

In order to obtain results valid up to order ω2, it is adequate to take R̂B→C to be equal
to R̂−11 and R̂C→O to be equal to R̂−12 . Hence, applying the above general theorem, we
find that on completing the circuit we have achieved a total rotation specified by a vector
ωcirc given by

ωcirc = δxδy

(
∂l

∂x
× l
)
×
(
∂l

∂y
× l
)

(41)

which since ∂l/∂x and ∂l/∂y are both perpendicular to l can be simplified to

ωcirc = δxδy

(
∂l

∂x
× ∂l

∂y

)
(42)

and is in direction l. Thus, remembering that the vector l lies in the (α, β, γ) space, we
can write

∆χ = ωcirc · l = δxδyεαβγlα
∂lβ
∂x

∂lγ
∂y
≡ 1

2
∂x∂yεαβγlα∇lβ ×∇lγ (×ẑ) (43)

(with the cross-product now in the coordinate (i, j, k) space). i.e. we have affected a
rotation around l whose magnitude is given by the RHS of eqn. (42) . If the wave function
(order parameter) is to return to its original value on completing the circuit, as it must,
we need to compensate (42) by an explicit rotation around l: again, to obtain results valid
to the relevant order, it is sufficient to take l to be fixed at its direction at O. Then using
the definition of dχ as the differential rotation around l and eqn. (30), we have for the
resulting total rotation angle ∆χ

∆χ =
2m

~

∮
vs · dl (44)

Since vs is defined everywhere within the circuit, we can rewrite (44) as

∆χ =
2m

~

∫
curl vsdA ∼=

2m

~
(curl vs)dxdy (45)
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and equating this to the (negative of) the RHS of (43) gives the MH relation (39), QED.
It may be easier to visualize the content of the MH theorem in integral form. Consider

for example the following configuration (sometimes called a “meron”): Start at the origin
with l̂ = ẑ, n̂1 = x, n̂2 = y, and rotate the triad by an angle π through an axis lying in
the xy-plane at an angle θ to the x-axis. The result is

l̂→ −ẑ, x→ x cos 2θ + y sin 2θ, y → −x sin 2θ + y cos 2θ (46)

i.e.
n1 + in2 → exp (2iθ)(n1 + in2) (47)

In other words, the effect of rotation through π around an axis in the xy-plane making an
angle θ with the x-axis is

χ→ χ+ 2θ (48)

Now imagine a circular disk of radius R, and rotate l everywhere by a position-dependent
rotation ω(r) given by

ω(r) = πr/R (or more generally πrf(|r|) with f(R) = 1/R) (49)

The resulting texture of l(r) has various names (“hedgehog/ willow/ boojum”): the salient
point is that at the outer edge of the disk (|r| = R), l(r) is everywhere downwards. The
“global” phase χ(r) when taken around the circumference of the disk is thus well-
defined, and from the above argument is given by 2θ and this the quantity ∆χ ≡

∮
∇χ · dl

is given by ∮
∇χ · dl = 4π (50)

(so that the circulation
∮

vs · dl is h/m (not h/2m!) and we have a so-called “coreless 4π
vortex”).

We see that this result can be generalized: Whenever we can find a contour on which
the direction of l is fixed, and we require the wave function (order parameter) to be single-
valued, we can define χ(r) on the contour and thus require∮

∇χ · dl = 4nπ (n integral) (51)

and so can conclude by the Stokes and MH relations

1

4π

∫
dS εijkli(∇lj ×∇lk) · ẑ = n (52)

Note that this theorem is actually purely geometric in nature; the use of quantum-mechanical
considerations in requiring single-valuedness of the wave function is not essential, in fact
were we to consider a purely classical Cosserat continuum and require the orientation of
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the triad to be single-value we could still derive the result (52). The integer defined by
the RHS of eqn. (52) is sometimes called the “Chern number” (or, in the case where the
orientation is a function of k across a band, the “TKNN number”).

While the discussion above was explicitly in terms of a vector (J = 1) order parameter,
it is easy to see how to generalize it: for general J the only difference is that a rotation
through δθ changes the phase of the wave function not by δθ but by Jδθ, and thus the
n on the RHS of eqn. (52) is replaced by nJ . In particular, for J = 1/2 (the case of a
“pseudospin”) we have ∫

dS εijkσi · (∇σj ×∇σk) · ẑ = 2πn (53)

Appendix: a useful special case of the MH theorem.

Consider a vector l (or σ) which is oriented along (say) the positive z-direction at points 1
and 2, but may deviate (continuously) from this direction at other points. We can define
the differential rotation δχ around l at any point, but in general its integral from 1 to 2
will be path-dependent. However, if we confine ourselves to paths on which the deviation
lies entirely in a single (specified) plane (e.g. the xz-plane), then the quantity

∆χ12 ≡
∫ 2

1
(∇χ · dr (54)

is uniquely defined (Moreover, by noting that the trivial case of constant l ‖ ẑ is common
to all planes, we see that ∆χ does not depend on the choice of plane).

The proof of this theorem follows straightfowardly by considering the special case of
the situation depicted in fig. 6 for which the variation of l is (say) entirely in the xz-plane.
Then from the fact that l, ∂l/∂x and ∂l/∂y all lie in a single plane, we see using eqn. (43)
that ∆χ must be zero, so that the quantity ∆χAB as defined in (54) is independent of the
path taken between A and B (A→ B vs A→ O → C → B).

Indeed, we can actually draw from this argument the strange conclusion that under
the specified conditions ∆χAB can be defined for arbitrary points A and B, whether or not
lA = lB. Thus, in conclusion, provided we confine ourselves to paths such that l(r) lies in
the plane containing l(1) and l(2)8, then the phase χ(r) can be “globally” defined.
This result will be useful in lecture 23.

8or in the case that to l(1) = l(2), to a single plane.


