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Topological insulators: a simple example

Consider first a simple model of a 2D crystal lattice (fig. 1) with the electrons described
by a nearest-neighbor tight-binding Hamiltonian:

Fig. 1
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“n.n.” ≡ nearest neighbors, Eo ≡ Eat − 4t
The single-particle eigenstates are 2D Bloch waves:

|k〉 = N−1/2
∑
i

exp (ik ·Ri)a
+
i |vac〉 ≡ a+

k |vac〉 (2)

with k ∈ FBZ (i.e. −π/a ≤ kx, ky ≤ π/a). The corresponding energy is

E(k) = Eo + t
∑

R̂=ax̂,aŷ

∣∣∣eik·R − 1
∣∣∣2 = Eo + 4t

{
sin2 kxa/2 + sin2 kya/2

}
(3)

so that the total bandwidth is 8t
Do surface modes automatically exist? From the symmetry of the problem, any surface

mode would have to be, in bulk, of the form, as regards its n-dependence.

|κ〉 = const.
∑

n e
−nκa+

n |vac〉
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But to the extent that there is no “extra” potential associated with the surface, the
above form (4) must extend also to negative values of n, which is not physically allowable.
If there is an appropriate potential associated with the surface as such, surface modes may
exist (problem) but do not have any specially interesting properties.

Next consider the generalization to the case of a 2D lattice of atoms with two atomic
states, say “s” and “p”, described by a nearest-neighbor tight-binding Hamiltonian:
Actually we have to be rather careful here: in 3D there are actually 3 atomic p-states which
are degenerate in the absence of spin-orbit interaction, and while the 2-dimensionality of
the lattice may split off the “pz” state, the “px” and “py” states will still be degenerate
by symmetry considerations. Moreover, we would expect that the Bloch waves derived
from those atomic states in the TB limit would break the degeneracy, so that for given
(general) k the px- and py- derived states would differ in energy; thus one has to deal not
with two but with three bands, and the problem gets quite messy. To get around this
complication let us assume that the intra-atomic spin-orbit coupling is large compared not
only to the p-state hopping matrix element t but to the p-state bandwidth 8t; although this
assumption is likely to be unrealistic in most experimentally viable situations, it permits
a simple conceptual picture. In fact, from the 2D symmetry we may reasonably assume in
this limit that the z component of (real) spin, which we denote as sz to avoid confusion with
the pseudospin, is a good quantum number, so that the intra-atomic spin-orbit interaction
(SOI) is of the form const. szL̂z, where L̂z is the z component of orbital angular momentum.
Now, the “chemists’ eigenstates” |px〉 and |py〉 are not even approximately eigenstates of
L̂z; however, we can form states which diagonalize this operator within the p-state manifold
by taking the “physicists’ eigenstates”, namely |px〉 ± i|py〉. Schematically, the state |L̂z =
+1〉 = (|px〉 + i|py〉) is of the form shown in fig. 2; the state |L̂z = −1〉 = (|px〉 − i|py〉) is
of the same “shape” but has the amplitudes ±i exchanged. Since spin is conserved, the 4

Fig. 2

states in the p-manifold are split into doublets Jz = ±3/2,±1/2 and from our assumption
above we may assume that the splitting is large compared to the bandwidth and we may
keep only the lower doublet (let us say for definiteness Jz = ±3/2). Then for the subsequent
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analysis we may fix sz to be (say) +1/2 and thus concentrate in the orbital state |Lz = +1〉;
since all the terms in the Hamiltonian which we will consider conserve spin, we may neglect
the |Lz = −1〉 state for the moment (although, we shall see, its existence is important to
the eventual argument).

With this simplifying assumption and neglecting for the moment inter-atomic SOI, the
structure of the single p-band derived from |Lz = +1〉 state in the TB limit is quite similar
to that of the s-band: despite the sign variation on the atomic states, it is intuitively clear
(cf. fig. 3) that the matrix element tp for hopping between any pair of nearest-neighbor
atoms is simply a constant (which is actually likely to be negative, though we shall not
need this result): thus, the total TB Hamiltonian needs

Fig. 3
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where b+i creates the |Lz = +1〉 state on atom i. By the same analysis as in the simple
s-band case we transform eqn. (4) to the form

Ĥ =
∑
k

{E(s)(k)a+
k ak + E(p)(k)b+k bk} (5)

with
E(α)(k) = E(α)

o + 4tα{sin2(kxa/2) + sin2(kya/2)} (α ≡ s, p) (6)

At this point it is convenient to subtract out a term which is proportional to the unit
vector in the 2D Hilbert space spaniel by a+

k |vac〉 and b+k |vac〉 by writing
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Eav(k) ≡ 1

2
(E(p)(k) + E(s)(k), δE(k) ≡ 1

2
(E(p)(k)− E(s)(k))) (7)

so that
Ĥ =

∑
k

E(av)(k)(a+
k ak + b+k bk) +

∑
k

δE(k)(b+k bk − a
+
k ak) (8)

For most of the subsequent discussion the term in Eav(k) is irrelevant and may be neglected.
Introducing the pseudospin language, with σ̂z(k) ≡ a+

k ak−b
+
k bk, the rest of the Hamiltonian

(8) can be rewritten in the form

Ĥ = −
∑

k∈FBZ
σzkHk (9)

with Hk a “field” in the z-direction in the pseudospin space with a value given by

Hk = M −B{sin2(kxa/2) + sin2(kya/2)} (10)

with the coefficients M and B given by

M ≡ 1

2
(E

(p)
0 − E(s)

0 ) B ≡ 1

2
(ts − tp) (11)

The model given by eqns. (9) and (10) is a slight generalization of the model for CdTe-
HgTe alloys used in the classic paper of Bernevig et al1; it has the advantage of explicitly
respecting the periodicity of Hk with respect to the FBZ. We will usually be interested in
the case where not only M > 0 but also B > 0 (recall that tp is likely to be negative).

The crucial question which arises in connection with eqn. (10) is: what is the locus in
the FBZ (if any) of H‖ = 0? We will call this locus the “inversion contour”. Evidently we
can distinguish three cases, depending on the relative magnitude of B and M (which we
will take to be both positive):

Fig. 4. a

Case I (B < M/2):

There is no point in the FBZ at which Hk = 0 (fig 4a).
We will see below that (when the inter-atomic SOI is
taken into account) this is the case of a simple textbook
band insulator.

Case II (B > M):

The locus of Hk = 0 lies entirely in the interior of the
FBZ (fig. 4b). This is the simplest case of a topological insulator.

1Science 314, 1757 (2006)



PHYS598PTD A.J.Leggett 2016 Lecture 23 Topological insulators: a simple example 5

Fig. 4b

Fig. 4c

Case III (M/2 < B < M):

In this case the locus of Hk = 0 intersects the FBZ
boundary (fig. 4c). However, it is clear that by an
appropriate redefinition of the FBZ accompanied by an
inversion of the pseudospin axis we can reduce this case
to case II, so again it will turn out to correspond to a
topological insulator.

—————————–

Were eqn. (10) in fact the complete Hamiltonian, then as
argued in L. 22 not only would case I be a simple textbook
insulator but cases II and cases III would correspond to textbook semi-metals. What makes
things much more interesting is the presence of a term in the Hamiltonian not included in
(10), namely the inter-atomic spin-orbit interaction. To discuss this, we shall concentrate
as above on the band derived from the atomic state Jz = +3/2, (|sz = +1/2, Lz = +1〉)
and drop explicit reference to the spin index.

The general form of the SOI (whether intra-atomic or inter-atomic) is

Ĥso = const. ŝ · p̂×∇V̂ (12)

where p is the momentum operator and V (r) the electronic potential. Thus, the matrix
elements between a state µ(= s, p) on atom i and a state ν(= s, p) on atom j is〈

µ, i|ĤSo|ν, j
〉

= 〈µ, i|ŝ · p×∇V |p, j〉 (13)

It is clear from the symmetry of the problem (the quantity p × ∇V transforms as a
pseudovector) that there are no nonzero s-s matrix elements, and a little thought shows
that there are no p-p ones either. Hence, if we restrict ourselves to interactions, the only
nonvanishing nearest-neighbor
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Fig. 5

matrix elements are of the form

〈s, i|ŝ · p×∇V |p, j〉ij∈nn (14)

(and the Hermitian conjugate element). From inspection
of fig. 5 we see that this should be proportional to the
overlap

〈s, i|p, j〉

which in turn should be proportional to exp iθij , where
θij is the angle of the vector rij connecting atoms i and
j; note in particular that the phase changes by π for
opposite nearest neighbors (i.e.〈s, i|p, j〉 = −〈s, j|p, i〉).

Thus, the general form of the inter-atomic SOI is

Ĥso, int = ∆′
∑
ij

(exp (iθij)a
+
i bj + H. c.) (15)

where θij = 0, π/2, π, 3π/2 for nearest neighbors to the N,E, S,W respectively. The effect
of Ĥso, int is to hybridize the s- and p-bands, so that the energy eigenstates (Bloch waves)
are now spinors:

ψk = N−1/2
∑
i

eik·Ri(uka
+
i + vkb

+
i )|vac〉 (16)

or in explicit (pseudo-) spinor notation,

ψk =

(
uk
vk

)
·N−1/2

∑
i

eik·Ri (17)

When projected on to the (spinor) Bloch state ψk, Ĥso is equivalent2 to a “field” in the
pseudospin xy-plane:

(Hk)so = A(x̂ sin kxa+ ŷ sin kya) (A = 4∆′) (18)

Combining eqn. (18) with eqn. (10), we finally obtain the complete Hamiltonian for our
problem:

Ĥ = −
∑
k

σ̂k ·Hk (19)

where the (pseudo) field Hk is given by the expression 3

Hk ≡
(
M −B

{
sin2(kxa/2) + sin2(kya/2)

})
ẑ +A sin(kxa)x̂+A sin(kya)ŷ (20)

2This is not quite obvious and needs a little calculation.
3I introduce the notation M,A,B, to make contact with that of Bernevig et al., but note that A and B

have different dimension from their quantities of the same name
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We note that for the band which evolves from the Jz = −3/2(sz = −1/2) atomic state
the only difference is that the sign of the y-component of Hk is reversed (this may be seen
from fig. 5 by changing i to −i)

It follows immediately from (20) that the energy eigenvalues for the Bloch state k are
±Ek, where

Ek ≡ |Hk|=
{

(M −B[sin2(kxa/2) + sin2(kya/2)])2 +A2(sin2 kxa+ sin2 kya)
}1/2

(21)

(and those for the Jz = −3/2 band are of course identical). It is immediately clear from
(21) that barring pathology the energy gap 2Ek is nonzero everywhere in the FBZ, so the
system is an insulator. However, we do not yet know what kind of insulator ... we do
however know that in the GS σk is parallel to Hk for all k

Some notes on the Hamiltonian (19), with Hk given by expression (20):

1. For |k|a� 1, Hk reduces to

Hk =

(
M − a2

4
Bk2

)
ẑ +Aak̂ (22)

which is the form used by Bernevig et al. However, the full expression (20) is properly
periodic in the reciprocal lattice vectors (2π/a)(x̂, ŷ).

2. In the limit k→ 0, the “transverse” term has the “Dirac” form (p ≡ h̄k)

ĤD = Aσ · p (which is invariant under T but not under P )

and the z-component is sometimes regarded as a “mass” term.

3. By contrast, in real space the Hamiltonian (with the Jz = −3/2 contribution in-
cluded) is invariant under both P and T , as it must be since it was derived from the
SOI which has both these properties.

4. Consider case II, (B > M) and imagine sweeping ky up from 0 to π/a and looking,
for each ky, for the minimum of Ek as a function of kx. (see fig. 6). From fig. 6 we
see that at the “critical” value of ky, kc = 2(a−1 sin−1

√
M/B), we have (trivially)

Emin(kx) ≤ E(kx = 0) = A sin kca. (23)

- a result which will be useful in the discussion of surface states. (Actually, for the
form (21) eqn. (23) is an equality, but it is useful to keep the ≤).
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Fig. 6

5. Consider the corners of the FBZ (kx, ky = ±π/a). Since the transverse field com-
ponents both vanish at these points, the field, and therefore the pseudospin of the
electron occupying this state in the groundstate, must be along the z-axis (“H⊥ = 0”),
and we see that it is parallel to the spin direction at the origin for case I (fig. 4a) but
opposite for case II (fig. 4b). This suggests that case II (the TI) might be somewhat
analogous to the “boojum” texture we discussed for superfluid 3He − A. Now, at
first sight this analogy does not seem to be good, because in the “boojum” case we
could find a contour at the edge of the disk on which l was everywhere down, while
in the TI case it is clear from eqn. (20) that the locus of H⊥ = 0 does not constitute
a complete curve but is only a set of distinct points. Thus at first sight it appears
impossible to reproduce the considerations regarding the MH theorem, etc.

What saves us is the theorem derived in the appendix to lecture 22. If we consider
any one edge of the FBZ, say the right-hand one in fig. 6, then along this edge according
to eqn (20), the effective field Hk, and hence the pseudospin σk, lies entirely in the yz-
plane, and hence the phase χ can be globally defined; in particular the difference in phase
between its value at the corners (π/a, π/a) and (π/a,−π/a) (when l lies along the z-axis)
is well-defined. Applying a similar argument to each of the four edges, we see the χ is
well-defined everywhere along the circumference of the FBZ and hence, since it
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must be single-valued mod 2π, we have for a contour C exactly enclosing the FBZ4∮
∇χ · dl = 2πn , n integral (24)

Moreover, application of the Stokes and MH theorems (of course in k-space) leads to
the conclusion that this n is just the Chern number of the filled “pseudo-valence” band:

1

2π

∫
FBZ

dSkεαβγσα(∇kσβ ×∇kσγ) = n (25)

It is exceedingly plausible that the case n = 0 corresponds to a band insulator and
n = 1 to a topological insulator, and we can check that this is correct by carrying out the
explicit rotation of σk along the lines connecting the center of the zone to the four corners;
since for case II these operations are just special cases of the one already carried out for
the cylindrically symmetric case, we can say right away that the resulting phases at the
corners must be just what they would be if the square FBZ were deformed into a circle,
namely (const. +) 0, π/2, π, 3π/2. Thus from eqn. (24), we conclude that for case II (the
TI) n = 1. On the other hand, it is clear that for case I, where σk is rotated away from the
↑ direction but returns to it at the corners, n must be zero. (For the Jz = −3/2(S2 = −1)
pseudo-valence band, since the helicity of the orbital configuration is reversed, the Chern
number n is −1).

Thus, we obtain the conclusion that a topological insulator is distinguished from a band
insulator by a topological property, namely the Chern number n, defined by eqn (25). This
is the central qualitative output of theory of the TI state.

The above argument implicitly assumes that the value of σk in the GS is well-defined
for all k ∈ FBZ, which in turn implies that the value of Hk is non-zero for all k, i.e. the
energy gap is non-zero throughout the whole of the FBZ. To the extent that this is true,
it is clear that since the Chern number can take only discrete values, it is impossible to
deform the GS of a TI continuously into that of a band insulator, or vice versa.

It is clear that the above remarks should apply much more generally than for the specific
Hamiltonian represented by eqns. (19) and (20).

—————————–

Although it is the nontrivial Chern number which is in some sense the most fundamental
characteristic of a TI as opposed to a band insulator, this is not an easy quantity to measure
experimentally; indeed, it is rather difficult to think of ways of distinguishing the two kinds
of system by looking at their bulk behavior. The recent interest in TI’s stems largely from
the realization that the properties of their surfaces are very different from those of a band
insulator. In the latter case, while surface modes may or may not exist, their properties

4The difference from eqn. (50) of L. 22 (where the more general form of the RNS is 4πn) is due to the
fact that we are discussing (pseudo-)spin 1/2 rather than (orbital) angular momentum 1, cf. p. 12 of L 22.
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are not particularly exotic, and in particular there is no requirement for them to span the
bulk energy gap.

What happens in the case of a TI? The following qualitative argument is somewhat
persuasive: Let’s go back to the expression (21) for the energy eigenvalues Ek, and set
B � M > 0; this corresponds to case (2) of lecture 21, and it is clear that the minimum
value of 2Ek (the “energy gap”) will occur for small values of k. For such values eqn. (21)
can be simplified to the form

Ek =
{

(M −B′k2)2 +A′2k2
}1/2

(B′ ≡ Ba2/4, A′ ≡ Aa) (26)

(which is in fact the form used by Bernevig et al. in their 2006 paper).
The locus of reversal of Hz (inversion contour) occurs on a circle of radius (M/B)1/2

(fig. 7), but for M < A
′2 the minimum value of 2Ek (the “energy gap”) actually occurs at

the origin and is simply equal to M. If now we consider the case M < 0, this corresponds to
case (1) of lecture 22, i.e. the system is a band insulator and the gap occurs (for |M |� B)
at the origin independently of the value of A

′2.

Fig. 7

Thus, if we sweep M from positive to negative values, the transition from a TI to a BI
occurs, as anticipated, precisely at the point M = 0 at which the gap closes. At this point
in the sweep Hz = 0, so the Hamiltonian has the simple “Dirac” form

ĤDirac = A′σ · k ≡ A′(kxσ̂x + kyσ̂y) (27)

with eigenvalues ±A|k|.
Now imagine a spatially extended system, with the parameter M allowed to be a

function of the spatial coordinater r and to cross zero on some surface 5 If we imagine
that M(r) varies slowly enough to allow a semiclassical treatment, we would conclude
that close to this surface the Hamiltonian will have approximately the Dirac form (27),

5This problem was actually analyzed in some detail by Pankratov and Volkov (Sov. Phys. Uspekhi 29
579 (1986)) many years before the recent surge of interest in TI’s.
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and thus does not possess an energy gap: E(k = 0) = 0! Thus, qualitatively, we expect
that close to this surface the system will behave as a (semi)-metal. Note also that the
surface modes described by (27) have a definite helicity (handedness): if we go back to the
original derivation of the Hamiltonian (19) we see that this handedness is specific to the
band derived from the state Jz = +3/2(Sz = +1/2), so that the corresponding state for
Sz = −1/2 should have k in (27) replaced by k∗ ≡ (kx,−ky), i.e. Ĥ = A′(kxσ̂x− kyσ̂y), so
opposite helicity.

Finally, we might guess that for the more experimentally interesting case of a real
surface of the system with vacuum, qualitatively similar conclusions would apply. However,
it is clear that in this case the concept of a component of the wave vector normal to the
surface becomes somewhat dubious, so an explicit treatment is needed.

For this purpose, we need to go back to the original real-space Hamiltonian described
by the sum of eqns (4) and (15), which it is convenient to write explicitly in terms of the
a+
i ’s and b+i ’s rather than the pseudospin rotation:

Ĥ = M ′
∑
i

(b+i bi − a
+
i ai) +B

∑
i,j∈nn

{(a+
i − a

+
j )(ai − aj)− (b+i − b

+
j )(bi − bj)}

+A
∑
i,j∈nn

{(exp iθij)a
+
i bj + H. c.} M ′ ≡M − 2B (28)

where θij indicates the direction of atomic site j relative to site i (cf. fig. 5). Consider a
surface (edge) of the 2D atomic array parallel to the y-direction in real space (fig. 8). It is

Fig. 8

clear that ky will be a constant of the motion; for the moment let us set it equal to zero,
i.e. ψn,m is independent of m, the index in the y-direction. Then sitting the (c-number)
amplitude an equal to 〈ψn|a+

n |vac〉 (etc.) we obtain by commuting Ĥ with the operator
which creates the excitation ψn the pair of equations, for any ”n” not on the surface,

M ′an −B(an+1 + an−1) +A(bn+1 + bn−1) = Ean (29a)
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−M ′bn −B(bn+1 + bn−1) +A(an+1 + an−1) = Ebn (29b)

Note that the sign of the term in A in the second equation is reversed relative to that
of the other terms because of the factor exp iθij ; this reversal is essential for subsequent
conclusions.

In the case where n corresponds to an atom on the surface, the terms in an+1, etc., are
of course absent. Equivalently, we may solve the equations (32) as they stand but require
that the physical solution corresponds to an+1, bn+1 = 0 for the “fictitious” state n+ 1.

In general, the 2×2 matrix eqn. (32) will have two different solutions corresponding to
different eigenvalues E, which cannot be superposed to give a (time-independent) solution
which cancels the amplitude on the fictitious state. However, for the special case E = 0
there may be two different solutions which can be superposed. To see this, set

an = aλn, bn = bλn (30)

where for normalizability we must require |λ|> 1 Then eqns. (32) yield

(M ′ −B(λ+ λ−1))a+A(λ− λ−1)b = 0 (31a)

(M ′ −B(λ+ λ−1))b+A(λ− λ−1)a = 0 (31b)

It is clear that these equations tolerate a solution a = ±b, i.e. with equal amplitudes for
the s and p bands. Which sign we choose depends on the choice of sign of A, which is a
matter of convention; if for definiteness we choose A to be positive, then b=+a. Then we
find two roots for λ

λ =
1

2(A+B)

{
−M ′ ±

√
M ′2 − 4(B2 −A2)

}
(32)

and by superposing the eigenfunctions with appropriate amplitudes we may be able to
cancel the total amplitude of the “fictitious” state n + 1. However, it is clear that we
cannot do this in the case where the expression under the square root is negative, so we
may confine ourselves to the case M

′2 > 4(B2 − A2). Then some rather tedious algebra
shows that the condition for the two eigenvalues to be both > 1 is

M > B > 0 (33)

i.e. the inversion contour must lie wholly within the FBZ.
Now consider the case of nonzero ky. This is equivalent to the case ky = 0 with two

modifications:

1. M ′ is replaced by M ′eff ≡M ′ −B sin2(kya/2)

2. There is an additional term in the energy corresponding to the “y-axis nearest-
neighbor SO interaction;” it is straightforward to show that this produces a nonzero
energy which (for sz = 1/2) is of the “bulk” form
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E(ky) = A sin(kya) (34)

(Intuitively, we have at the surface an “imaginary” field in the ẑ-direction whose magnitude

is equal to Hx, so |H|=
√
H2
z +H2

k +H2
y is just Hy). Note that E(ky) is odd in ky

and so apparently breaks time-reversal invariance. However, the latter is restored by the
observation that for the band corresponding to s2 = −1/2 the sign of E(ky) is reversed, so
the pattern looks like fig. 9.

Fig. 9

How far does the surface state extend in ky? To see this, note that the equations which
follow for λ for ky 6= 0 are identical to eqns. (32) except for the replacement of M by
Meff ≡ M − B sin2(kya/2). For the original (ky = 0) problem the surface state existed
provided B > M > 0 ); thus the range of ky for which the state continues to exist is
Meff > 0, i.e.

ky <
2

a
sin−1(M/B)1/2 ≡ kc (35)

and its maximum energy is therefore A sin kca. However, we saw earlier (lecture 22) that
for ky = kc the minimum value of the gap as a function of kx was 6 A sin (kca)! Hence we
conclude that the surface state must completely cross the band gap see fig. 10.
An important point is that because the states (ky ↑,−ky ↓) are related by time reversal,
no time-reversal-invariant perturbation (such as scattering by spinless static impurities)
can mix them; the situation is somewhat similar to that occurring at the edge of a QH
state. To the extent that this is true, one expects, a “surface metal”; since there is only one
“transverse” channel (for a given spin) and it moreover has definite helicity, one expects
according to the Landauer formula a “spin Hall conductance” of exactly e2/h.
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Fig. 10


