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More on topological insulators: the experimental situation

The simple model explored in lecture 23 allows us to draw some important qualitative
conclusions concerning the phenomenon of topological insulators. First, let’s consider the
relation to the QHE. This may not be immediately obvious, since most discussions of the
QHE neglect the existence of a crystalline lattice (except in so far as it leads to the replace-
ment of the real electron mass m by an effective mass m∗); this is usually experimentally
realistic since when both the inter-electron distance and the magnetic length are very large
compared to the lattice spacing, and thus the relevant electrons never get anywhere near
the edge of the FBZ and a single-band picture appears to be quite adequate. On the other
hand, the difference between a TI and a standard band insulator appears to depend essen-
tially on the behavior of the band structure over the whole of the FBZ. Thus, at first sight
there is not much relationship between the two phenomena.

However, it is perfectly possible to analyze the (integral) QHE taking into account
completely the effects of the periodic crystalline lattice, and this was done in a famous
1982 paper1 by Thouless and co-workers (usually known as TKNN). They found that
under certain conditions the effect of the magnetic field is to split the energy levels of
the system into sub-bands, with each band being characterized by a topological quantum
number similar (but not identical) in form to (23.25). They further sketched an argument
(filled out in more detail a few years later by Hatsugai2) that in this case there would
automatically be chiral edge states (that is, states which can propagate in one direction
only as in the “free-space” QHE) which would interpolate between the bands. The TKNN
analysis neglects the spin degree of freedom, but it was subsequently realized that in the
case of a system in zero magnetic field, the spin-orbit coupling could in effect play the role
of an external field whose “sense” however depends on the spin. Indeed the model analyzed
in lecture 23 can be viewed in precisely this way: the “up” and “down” spin electrons are
completely decoupled, and each behaves effectively as an independent QHE system, with a
Chern number (“TKNN number”) which is +1 for the up spins and −1 for the down ones.
Since time reversal (TR) inversion is not broken, there can be no charge current flowing
around the edges of the system, but nothing prevents a spin current from doing so. (Recall
that the expression for the spin current,

∑
i σipi/m, is even under TR).

We must briefly discuss the question of the “protection” of the edge modes by time-
reversal invariance (TRI). In the simple model of lecture 23, this is rather trivial: In fig.
23.10, we see that two modes cross the gap completely, thus interpolating between the
valence and conduction bands and allowing metallic behavior at the surface. Suppose now
that some perturbation mixes the two modes, then by the usual “level-repulsion” arguments
we would expect the picture to change to that shown in fig. 1, so that there is now a nonzero
gap and the surface states behave as an insulator. The crucial point, now, is that because
the modes have different values of the (real) spin projection sz, no perturbation which com-

1Thouless et al., PRL 49, 405 (1982)
2Hatsugai, PRL 71, 3697 (1993)
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mutes with sz (e.g. scattering by nonmagnetic impurities) can mix the states in this way.

Fig. 1

To mix them would require, for example, a magnetic field,
in the direction parallel to the plane (hence perpendicular to
sz) and this then suggests that such a field should have a
dramatic qualitative effect.

Before moving beyond the simple model of lecture 23, let’s
examine the rather delicate question of the symmetry and
periodicity of the Bloch states. Consider the Hamiltonian
Ĥ(k) associated with the Bloch state k, which according to
(23.19) is a matrix in the pseudospin space (for the moment
we suppress the spin degree of freedom):

Ĥ(k) = −σ̂k ·Hk (1)

with Hh given by the expression (23.20). If we extend k beyond the FBZ, then we see that
the crystal periodicity implies that if K is any reciprocal lattice vector then

Ĥ(k +K) ≡ Ĥ(k) (2)

and in particular both for each of the four states ki, i = 1, 2, 3, 4 lying at the center of an
FBZ edge and for the four “corner” states (i = 5, 6, 7, 8) we have

Ĥ(ki) ≡ Ĥ(−ki) (3)

We now come to a delicate point: In the groundstate, at each of the eight points ki(i =
1, ..8) the pseudospin σ is along the negative z-axis, and according to the argument given
above the phase of the corresponding wave function ukn (actually vk) can be unambiguously
defined. Moreover, according to the argument below eqn. (23.25) this phase should (up to
an arbitrary additive constant) be simply equal to the angle of the ki in question relative
to (say) the x-axis:

ϕ(ki) = θi (4)

so that, explicitly, ϕ = 0, π/2, π, 3π/2 for i = 1, ..4 and ϕ = π/4, 3π/4, 5π/4, 7π/4 for
i = 5..8. Thus, we see that according to this argument ϕ(−ki) = ϕ(ki) + π. On the other
hand, for each of the ki there exists a reciprocal lattice vector K such that −ki = ki + K,
and thus according to eqn. (7) of lecture 22 (periodicity of the Bloch wave functions in K)
we should have ϕ(−ki) ≡ ϕ(ki)! Thus we appear to reach a contradiction.

At first sight it is tempting to argue that the “absolute” phase ϕ of the Bloch wave
function ukm is anyway physically meaningless: all that matters is the relative phase of the
“up” and “down” componets uk and vk, which is what determines transverse components
of 〈σ〉 according to the standard textbook formula 〈σkL〉 = Re(u∗kvk), 〈σyk〉 = lm(u∗kvk).
Since 〈σ〉 is well-defined (not just for the special points ki but across the whole FBZ)
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this means that we need not worry about any ambiguity in the phases of the uk and vk
individually.

We return to this argument below, but note that while it may give us an escape from the
contradiction (at least as regards the bulk states) for a single (real)-spin state (say Sz = +1)
it comes back as soon as we include the Sz = −1 component, since the expectation value of
(e.g.) the Fourier-transformed operator Sxk is certainly physically meaningful and, while
it does not depend on the absolute phase of vk↑ and vk↓, does depend on their relative
phase. Hence the latter, at least, must be physically meaningful.

But now we note an interesting point: Since the Lz = −1 state has (kx, ky) replaced
by (kx,−ky), the phase of the down-(real)-spin state Sz = −1 has its phase reversed with
respect to that of Sz = +1, and thus the relative phase of the Sz = +1,−1 states is
just twice the “absolute” phase of the Sz = +1 state: ϕrel(ki) = 2θi. Thus ϕrel(−ki) =
+ϕrel(ki) and we are no longer in contradiction with the K-periodicity given by eqn. (7) of
lecture 22! This argument suggests that, more generally, various ambiguities occurring in
the theory of topological insulators may be clarified if rather than focusing on the behavior
of a single spin state, we compare the behavior of the Sz = ±1 states.

We still need to discuss the question: for say Sz = +1, is the phase of the uk and
vk individually (as distinct from their relative phase) meaningful? Consider the simple
case of a single filled band described by (spinless, pseudospinless) Bloch states uk(r). The
many-body GSWF is the Slater determinant

Ψ(r1, r2, ..., rN )) = A
∏

k∈FBZ
uk(ri)exp ik · ri (5)

Suppose now we multiply each uk(r) by some arbitrary phase factor exp iϕ(k) (where
ϕ(k) need not be a continuous function of k). We see that the effect is simply to multiply
the many-body wave function (5) by the overall factor

∏
k∈FBZ exp iϕ(k) ≡ exp iA,A ≡∑

k∈FBZ ϕ(k), which clearly can have no physical significance! A similar argument should
prima facie apply to the case considered in lecture 23 provided each spinor is multiplied
by an overall phase factor.

This argument is not quite as strong as it looks. What is the physical situation described
by eqn (5)? It has to be a system confined, in real space, to an appropriate box, with
the single-particle wave functions subjected to periodic boundary conditions. For such a
“theoretical” system, the conclusion that the overall phases of the ukn’s do not matter is
probably correct. But in real life we are interested in physical systems which have real
surfaces (edges) and now the (relative) phases ϕ(k) do matter – close to the edges the
Slater determinant of Bloch waves given by eqn. (5) is misleading; we still of course have
a scalar determinant, but generically of a linear superposition of Bloch waves, when the
relative phases matter. So we cannot shrug off the problem quite so easily...

Returning, then, to the dilemma posed above, there seem to be two obvious possible
ways of resolving it. One, which seems to be the majority preference, is to require that
eqn. (4) be maintained; since if we also require un(k) to be continuous throughout the
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FBZ, we then get an unwanted singularity at the origin, we then need to define un(k) to be
continuous but different in overlapping regions of the FBZ and then “glue them together”;
this is the procedure favored eg by Bernevig in his book. The alternative procedure would
seem to be simply to abandon the constraint of periodicity in K (which is in some sense
a special case of the former approach, with the “glueing” occurring along the FBZ edges).
To my mind this is the simpler convention, and I will follow it. Note that none of the
above is relevant to the definition of the Chern number, which is entirely in terms of the
direction of σ.

We now consider how to generalize the simple model of lecture 23. An important point,
particularly when we come to 3D generalization, is that in the general case sz does not
commute with Ĥ. This means that we can no longer treat the sz = ±1 states separately
and assign them individual Chern numbers: however, time reversal invariance may well still
hold (we shall assume it does3) and may then be expected to produce somewhat similar
results.

Indeed, a good deal of information can be obtained from invariance, if it occurs, under
space inversion P̂ and time reversal T̂ . For this purpose, it is convenient to combine the
separate spinors for sz = ±1 into a single four-component spinor whose components are
labeled by sz = ±1, σz = ±1. The parity operation P̂ then simply changes k to −k,
without any effect on the structure of the spinor, while time reversal T̂ also changes k to
−k but at the same time effects the operation −iŝy on the (real) spin degree of freedom,
plus complex conjugation. The Hamiltonian is now, for general k, a 4×4 matrix; however,
in the case of the four points ki eqn. (3) plus TRI inplies that it separates into two 2× 2
components describing two Kramers doublets.

How to distinguish a B1 from a T1? A first shot might involve the observation that
for the TI of lecture 23 the phases of the (σz = −1) components of the spinor are, for
sz = +1, 0, π/2, π, 3π/2 whereas for sz = −1 they are 0,−π/2,−π,−3π/2 (or equivalently
0, 3π/2, π, π/2) i.e. the “chirality” is reversed. By contrast, for the band insulator the
(σz = +1) component for both sz all have phase 0 (or constant). Hence one might try to
take the quantity (where ψi denotes the orbital component only)

4∑
i=1

(ψ
(sz=+1)
i , ψ

(sz=−1)
i ) (6)

which takes the value +1 for the BI and 0 for the TI, as an indicator of the differences.
However, using the form of the TR operator T̂ (which, recall, reverses k, operates with
−iŝy on the spinor and complex conjugates) we see that (6) is equivalent to

Q ≡
4∑
i=1

(ψ
(1)
i T̂ψ

(2)
i ) (7)

3Note in particular that while inversion invariance automatically fails near a surface, TRI may well still
hold there.
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where ψ
(1)
i , ψ

(2)
i are the two occupied eigenstates. It is therefore plausible to regard the

expression Q as an appropriate indicator of the TI/BI distinction: Q = 1 for a BI, 0 for a
TI. Or equivalently we can define

ν = 1−Q

so that ν = 0 for a BI and 1 for a TI. As far as I know this possible definition has not been
explored in the literature.

In any case, a proper characterization of TI’s versus band insulators needs to somehow

Fig. 2

reflect the fact that the pseudospin configuration changes non-
trivially between the origin (k = 0, “Γ-point”) and the edge
of the FBZ. Thus we expect that we need to involve somehow
not only the TRI points on the edge of the FBZ but also those
at k = 0. To motivate the standard approach4, let us pro-
ceed as follows: Consider the four TRI points (i.e. the points
such that Ĥ(k) = Ĥ(−k) where Ĥ is a matrix in pseudospin
space):

Γ1 : k = 0

Γ2 : k = Gx/2

Γ3 : k = (Gx +Gy)/2

Γ4 : k = Gy/2

with Gx ≡ (G/2)x̂,Gy ≡ (G/2)ŷ, G ≡ 2π/a

Staying for the moment with the model of lecture 23, let’s consider the argument of the
quantity µi ≡ ψ∗↑ψ↓(Γi), where ψ↑,↓ are the orbital were functions associated with the (real)
spin states sz = ±1. Since at Γ1 we can (by convention) choose the phases of ψ↑,↓ to be
identical, and at the other 3 Γ-points ψ↑↓ ∝ exp ± iθ where θ is the angle made by a line
to the k = 0 point with (say) the x-axis, we have for λi ≡ argµi

λ1 = 0, λ2 = 0, λ3 = π/2, λ4 = π (8)

By contrast, for a band insulator all four λi are zero. How to express this difference
quantitatively?

The answer given in the literature4 goes as follows:
For each point TRI point Γi (i = 1, ...4) consider the 2D matrix

w(i)
µν ≡ 〈uµ(ki)|T̂ |uν(−ki)〉

where uµ(µ = 1, 2) labels the two spinor states occupied in the groundstate, and T̂ is the
time reversal operator. Since T̂ 2 = −1 for fermions, and the points Γi are TR invariant,

4e.g. Fu and Kane, PR B 74. 195312 (2006)
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wµυ is an antisymmetric matrix. We now define

δi ≡ w(i)
µν/

√
w

(i)2
µν (9)

so that δi can take only the values ±1. The tricky part is the treatment of the square root:
we can define this so as to stay on the same branch throughout the whole of the FBZ,
and, if we do this for the case of the model of lecture 23, then three of the four δi’s will
be +1 and the fourth −1 [not obvious; further discussion in the lecture]. (For the band
insulator it is clear that all four δi’s can be chosen to be +1). The general definition of a
“Z2 invariant” which will distinguish TI’s and BI’s is then

(−1)ν ≡
4∏
i=1

δi (10)

so that ν = 0 for a band insulator and 1 for a topological insulator.

Fig. 3

How then to generalize this idea to three dimensions? The simplest scheme goes as
follows: We add four more TRI points in the (now 3D) FBZ by translating each of the
four Γi by Gz/2 where Gz ≡ Gẑ. In this way the 8 Γi’s form a cube, and by arguments
similar to those for the 2D case we can assign a number δi = ±1 to each of them: see fig
3 (taken from Fu and Kane 2006). We can now define (a) a Z2 quantum number for each
pair of faces separately (call these ν1, ν2, ν3) but also a fourth quantum number νo = ±1
which has no 2D analog:

νo ≡
8∏
i=1

δi

We note that if νo = 0 (the case of a so-called “weak 3D TI”) then the quantities
νi(i = 1, 2, 3) are formally independent of which faces of the cube we consider, whereas in
the case ν0 = 1 (“strong 3D TI”) they are different; we then say that νi = 1 by convention
(cf. (a - d) in fig. 3).

In general it turns out [not obvious!] that the nature of the surface states is strongly
dependent on the value of νo. For the case νo = 0 (weak TI) either there are no edge states
bridging the gap, or they exist in the ideal case but are not robust against scattering by
e.g. magnetic impurities. For the νo = 1 (strong TI) the surface states are much more



PHYS598PTD A.J.Leggett 2016 Lecture 24 More on topological insulators 7

interesting: on each surface there exists one (or in general case an odd number) of “Dirac
cones” with an energy related to momentum k and (real) spin s by the formula

E(k) = s · k × n̂

where n̂ is the normal to the surface: note that this expression is correctly invariant under
both P and T . Thus, we get “spin-momentum locking” as shown in fig. (9) below.

Let’s now turn to the experimental evidence for topological insulators. This, like the
theory, is already a vast subject, and I can only scratch the surface. By definition, a TI,
whether 2D or 3D, is insulating in bulk, and it is usually difficult to see anything spectac-
ular. One exception is the quantum Hall effect (in 2D systems); because of the mixing of
conduction- and valence-band-states in a TI (as for that matter in a band insulator with
substantial spin-orbit interaction) the filling of the Landau levels as a function of doping
is anomalous. This will not be discussed here. The experiments done5 on the surfaces of
(putative) TI’s are mostly of two types, surface transport and ARPES. The original 2D
system tested (5) for TI-type behavior (according to the predictions of Bernevig et al.) is
a quantum well heterostructure consisting of states of CdTe and HgTe: see fig (4). In the
experiments the total width dtot was always ≤ 40 nm, so since the effective mass m* is not
very different from m, the first “transverse” excited state has excitation energy E ∼ 1K, so
at the temperature of the experiment (∼ 50 mK) it should be legitimate to treat the whole
system as effectively 2D. However, crudely speaking, CdTe is a band insulator whereas
HgTe has TI-like characteristics: more quantitatively. Bernevig et al. predicted that for d
less than a critical value dc which they estimated as ∼ 6 nm, the heterostructure should
behave as a simple band insulator, whereas for d > dc it should be a 2D TI. In either
case we can tune the Fermi energy EF by varying the gate voltage and hence the carrier
density n; of course, when EF lies within either the valence or the conduction band we
would expect the system to behave as a metal independently of its TI/BI character, so the
interesting case is when EF lies in the bulk gap; in that case the BI should show insulating
behavior, and indeed the experiments done on a sample width dc = 4.5 nm (< dc) show a
(longitudinal) resistance Rxx several orders of magnitude greater than h/e2 (and consistent
with ∞).

What do we expect in the TI phase? On inspection of fig. (5), we see that there
is exactly one state of the correct chirality on each edge, so according to the Landauer
formula we would predict I = (2e2/h)V or Rxx = h/2e2 ≈ 12kΩ And, lo and behold, for
d = 8 nm (> dc) and EF in the bulkless gap, a substance close to this volume is seen in
the experiments!

Fig. 5

Is this a fluke coincidence? Two circumstantial pieces of
evidence are (a) that Rxx is independent of the sample width,

which indicates that it (or rather the conductance R
(−1)
xx ) is

likely a surface effect (b) the fact that the conclusion
∑

xx is

5König et al., Science 319, 766 (2007)
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Fig. 4

strongly supported by even small magnetic fields ∼ 0·05T (see
fig. 6). This strongly suggests that the suppression is a conse-
quence of the breaking of time reversal invariance. Moreover,
the fact that the suppression is a strong function of the di-
rection of the field, being essentially absent for fields parallel
to the 2D surface, indicates that the effect does not have to do with the Zeeman coupling
but is a consequence of the orbital effect of the field.

An even more convincing surface conductance experiment6 by the same (Würzburg)
group used the 6-terminal geometry shown in fig. 7. For this kind of setup the Landauer-
Büttiker theory gives a relation between the currents Ii in the i-th lead and the voltages
Vj in the j-th lead:

Ii = (e2/h)
∑
j

(TjiVi − TijVj) (11)

Fig. 6

when Tij is the total transmission amplitude (Tij =∑
ν T

(ν)
ij where ν is a channel label) from lead i to lead j.

For the quantum hall effect (a “chiral” case) the quantity
Ti,i+1 is nonzero but Ti+1,i = 0, and we can work out the
consequences. For the TI (“QSH”) case, by contrast, there is
exactly one channel of each chirality (with of course opposite
spins), so we have a quite different result:

Ti,i+1 = Ti+1,i = 1 ; all other Tij zero.

We can substitute this result into (11) and solve to find the currents Iij between leads i
and j in terms of the voltages Vkl applied between leads k and l. In particular we find for

6Roth et al., Science 325, 294 (2009)
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a 4-terminal measurement (quite differently from the predictions for a simple QH state)
for Rij,kl ≡ Vkl/Iij

R14,14 = 3h/e2, R14,23 = h/2e2

This is well verified in the experiment.

Fig. 7

The other major class of existing experiments uses
ARPES. For reasons of adequate intensity, this has to be
done on surfaces rather than edges, i.e., we require a bulk
3D system; the simplest example to date is Bi2Se3. One can
and does measure the energy spectrum, thereby confirming
the “level-crossing” picture of lecture 23, fig. 10 (see fig. 8).
However, even more interestingly, it turns out that by mea-
suring the spin polarization of the ejected photo electrons one
can infer the average spin polarization of the surface states
from which they were ejected. The result for 〈Si〉(i = x, y, z)
as a function of ky is shown schematically in fig. (9). This
confirms the prediction (cf. above) that the spin of the surface states is perpendicular both
to the wave vector k and to the surface normal n̂ ≡ ẑ: thus the picture is, as predicted
theoretically, that shown in fig. (9a) for a view perpendicular (in spin space) to the surface,
and that of fig. (9b) for a view from the directions parallel to the surface.

Fig. 8
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